Electronic Appendix:

Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path

Appendix A - Nomenclature

$General\ framework:$

${\cal R}$	body manifold in the physical configuration
\mathcal{R}^{R}	material manifold in the reference configuration
$\partial \mathcal{R}$	surface boundary of \mathcal{R}
$\partial \mathcal{R}^{\mathrm{R}}$	surface boundary of \mathcal{R}^{R}
	association surface in the physical configuration
$\mathcal{S}_{a}^{\mathrm{R}}$	association surface in the reference configuration
\mathcal{S}_d^a	dissociation surface in the physical configuration
$egin{aligned} \mathcal{S}_a \ \mathcal{S}_a^{\mathrm{R}} \ \mathcal{S}_d \ \mathcal{S}_d^{\mathrm{R}} \end{aligned}$	dissociation surface in the reference configuration
t^{a}	time variable
\mathbf{y}	spatial point in the physical configuration
\mathbf{x}	material point in the reference configuration
$\hat{\mathbf{y}}$	one on one mapping from reference configuration to physical configuration
$\hat{\mathbf{x}}$	inverse one on one mapping from physical configuration to reference configuration
\mathbf{n}	outward pointing normal vector on the boundary $\partial \mathcal{R}$ in the physical configuration
\mathbf{n}^{R}	outward pointing normal vector on the boundary $\partial \mathcal{R}^{R}$ in the reference configuration
$\mathrm{d}V_y$	volume element in the physical configuration
$\mathrm{d} V_x$	volume element in the reference configuration
$\mathrm{d}A_y$	area element in the physical configuration
$\mathrm{d}A_x$	area element in the reference configuration
\mathbf{v}	particle velocity in the physical configuration
${f V}$	boundary velocity in the physical configuration
\mathbf{V}_{G}	growth velocity in the physical configuration
\mathbf{V}^{R}	boundary velocity in the reference configuration
$\mathbf{j}_{_{\mathbf{z}}}$	flux of solvent in the physical configuration
\mathbf{j}^{R}	flux of solvent in the reference configuration
${f F}$	deformation gradient
J	volume ratio
ϕ	physical volume fraction of solvent in the body
$\phi^{ m R}$	referential volume fraction of solvent in the body
ψ	Helmholtz free energy of the body
ψ_e	Helmholtz elastic free energy associated with the solid matrix
ψ_s	Helmholtz free energy of the solvent
\mathbf{T}	Cauchy stress tensor
S	Piola stress tensor
$f b^{ m R}$	body forces in the physical configuration
	body forces in the reference configuration
p	hydrostatic pressure
$\mu_{\mathbf{r}}$	chemical potential of the solvent
f	driving force on the boundary
$\Delta \psi$	latent energy of growth
\mathcal{G}	growth function

Specific problem:

k Boltzmann constant

T temperature

N number of polymer chains per unit volume

 ν volume of a solvent unit

 χ Flory-Huggins interaction parameter

D diffusion coefficient

b reaction constant

 ψ_0 free energy of the unmixed solvent

 ψ_a potential energy gain at the association boundary

 λ_0 imposed in-plane stretch

Appendix B - Rate of Change of Volume

Consider a material volume dV_x in the reference configuration, and let dV_y be the volume occupied by this same collection of particles in the current configuration. Recall that $dV_y = JdV_x$ where $J = \det \mathbf{F}$. The standard formula for differentiating the determinant reads

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\det \mathbf{F} \right) = \left(\det \mathbf{F} \right) \ \mathrm{tr} \left(\frac{\mathrm{d}\mathbf{F}}{\mathrm{d}t} \mathbf{F}^{-1} \right), \tag{B1}$$

which can alternatively be written as

$$\dot{J} = J \operatorname{tr} \left(\dot{\mathbf{F}} \mathbf{F}^{-1} \right). \tag{B2}$$

Taking the derivative of $(2.3)^2$, we can write the relation $\dot{\mathbf{F}} = \operatorname{grad} \mathbf{v} \mathbf{F}$. Substituting the latter in (B2), we obtain the identity

$$\dot{J} = J \text{ div } \mathbf{v}. \tag{B3}$$

Appendix C - Explicit Formulae

In the following, we provide the full analytical formulae that have been represented in condensed form in the main text.

The continuity of the chemical potential (6.19) is

$$\ln\left(1 - \frac{1}{J_d}\right) + \frac{1}{J_d} + \frac{\chi}{J_d^2} + N\nu\left(\frac{J_d}{\lambda_0^4} - \frac{1}{J_d}\right) = 0.$$
 (C1)

Equation (6.16) that relates the driving force to the swelling ratio can be further developed using (5.1)-(5.3), (5.8), (5.9) and (6.29) to write the driving force at the association boundary as

$$f_{a}(J_{a}) = \psi_{0} + \psi_{a} - \frac{kT}{\nu} (J_{a} - 1) \left[\ln \left(1 - \frac{1}{J_{a}} \right) + \frac{\chi}{J_{a}} \right] - \frac{NkT}{2} \left(\frac{J_{a}^{2}}{\lambda_{0}^{4}} + 2\lambda_{0}^{2} - 3 - 2 \ln J_{a} \right) + \left\{ \frac{kT}{\nu} \left[\ln \left(1 - \frac{1}{J_{a}} \right) + \frac{1}{J_{a}} + \frac{\chi}{J_{a}^{2}} \right] + NkT \left(\frac{J_{a}}{\lambda_{0}^{4}} - \frac{1}{J_{a}} \right) \right\} J_{a},$$
(C2)

and at the dissociation boundary as

$$f_d(J_d) = \psi_0 (1 + J_d) - \frac{kT}{\nu} (J_d - 1) \left[\ln \left(1 - \frac{1}{J_d} \right) + \frac{\chi}{J_d} \right] - \frac{NkT}{2} \left(\frac{J_d^2}{\lambda_0^4} + 2\lambda_0^2 - 3 - 2 \ln J_d \right). \tag{C3}$$

Substituting (5.10) and (6.30) in (6.45) and (6.46), we can write in the physical space

$$y(J) = \frac{\lambda_0^2 D}{b \sinh\left(\frac{\nu}{kT} f_a(J_a)\right)} \left\{ \frac{N\nu}{\lambda_0^4} \left[\ln\left(\frac{J}{J_a}\right) + \frac{1}{J} - \frac{1}{J_a} \right] - \frac{N\nu}{2} \left(\frac{1}{J^2} - \frac{1}{J_a^2}\right) + \frac{1}{3} \left(N\nu + 2\chi - 1\right) \left(\frac{1}{J^3} - \frac{1}{J_a^3}\right) - \frac{\chi}{2} \left(\frac{1}{J^4} - \frac{1}{J_a^4}\right) \right],$$
(C4)

and in the reference space

$$X(J) = \frac{\lambda_0^4 D}{b \sinh\left(\frac{\nu}{kT} f_a(J_a)\right)} \left[\frac{N\nu}{\lambda_0^4} \left(-\frac{1}{J} + \frac{1}{J_a} + \frac{1}{2J^2} - \frac{1}{2J_a^2} \right) - \frac{N\nu}{3} \left(\frac{1}{J^3} - \frac{1}{J_a^3} \right) + \frac{1}{4} \left(N\nu + 2\chi - 1 \right) \left(\frac{1}{J^4} - \frac{1}{J_a^4} \right) - \frac{2\chi}{5} \left(\frac{1}{J^5} - \frac{1}{J_a^5} \right) \right].$$
 (C5)

Analytical expressions for (6.35) and (6.38) can be obtained by replacing J and J_a in (C4) and (C5) by \tilde{J} and \tilde{J}_a . Notice that the determination of J_a is required to use the above relations. During the evolution along the universal path, the swelling ratio at the association boundary $J_a(t)$ can be determined using the implicit equation (6.48). The thicknesses ℓ and $\ell^{\rm R}$ of the body in the physical and the reference spaces are obtained by evaluating (C4) and (C5) at $J = J_d$.

Appendix D - Supplementary Figures

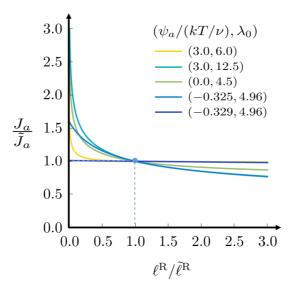


Figure D1: Effect of ψ_a and λ_0 on the universal path. The universal path determined by the numerical simulations is indistinguishable from that given by the analytical formula (6.46).

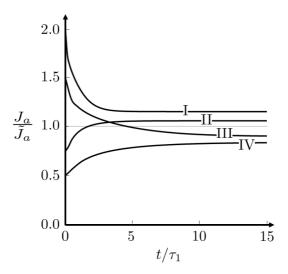


Figure D2: Time evolution of the swelling ratio $J_a(t) = J(y,t)|_{y=0}$ at the association boundary, during the diffusion-dominated stage for the four paths initiating in regions I-IV in Fig. 5. Time is normalized by $\tau_1 = 8.2 \times 10^3$ s.

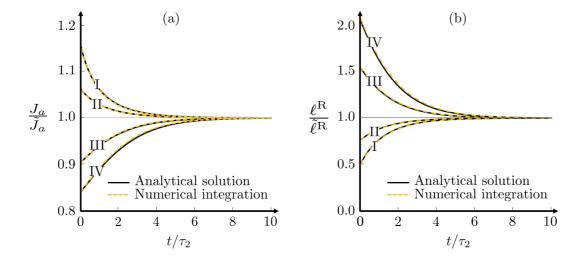


Figure D3: Time evolution of (a) the swelling ratio $J_a(t)$ and (b) the dry thickness $\ell^{\rm R}(t)$ at the association boundary along the universal path for the four initial conditions in regions I-IV shown in Fig. 5. Notice that time has been reset so that t=0 corresponds to the time at which evolution along the universal path begins. The solid curves correspond to the analytical solution (6.48) and (6.46).