
Electronic Appendix:

Kinetics of surface growth with coupled diffusion and the emergence of a
universal growth path

Appendix A - Nomenclature

General framework:

R body manifold in the physical configuration
RR material manifold in the reference configuration
∂R surface boundary of R
∂RR surface boundary of RR

Sa association surface in the physical configuration
SR

a association surface in the reference configuration
Sd dissociation surface in the physical configuration
SR

d dissociation surface in the reference configuration
t time variable
y spatial point in the physical configuration
x material point in the reference configuration
ŷ one on one mapping from reference configuration to physical configuration
x̂ inverse one on one mapping from physical configuration to reference configuration
n outward pointing normal vector on the boundary ∂R in the physical configuration
nR outward pointing normal vector on the boundary ∂RR in the reference configuration
dVy volume element in the physical configuration
dVx volume element in the reference configuration
dAy area element in the physical configuration
dAx area element in the reference configuration
v particle velocity in the physical configuration
V boundary velocity in the physical configuration
VG growth velocity in the physical configuration
VR boundary velocity in the reference configuration
j flux of solvent in the physical configuration
jR flux of solvent in the reference configuration
F deformation gradient
J volume ratio
φ physical volume fraction of solvent in the body
φR referential volume fraction of solvent in the body
ψ Helmholtz free energy of the body
ψe Helmholtz elastic free energy associated with the solid matrix
ψs Helmholtz free energy of the solvent
T Cauchy stress tensor
S Piola stress tensor
b body forces in the physical configuration
bR body forces in the reference configuration
p hydrostatic pressure
μ chemical potential of the solvent
f driving force on the boundary
Δψ latent energy of growth
G growth function
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Specific problem:

k Boltzmann constant
T temperature
N number of polymer chains per unit volume
ν volume of a solvent unit
χ Flory-Huggins interaction parameter
D diffusion coefficient
b reaction constant
ψ0 free energy of the unmixed solvent
ψa potential energy gain at the association boundary
λ0 imposed in-plane stretch

Appendix B - Rate of Change of Volume
Consider a material volume dVx in the reference configuration, and let dVy be the volume
occupied by this same collection of particles in the current configuration. Recall that dVy = JdVx

where J = detF. The standard formula for differentiating the determinant reads

d
dt

(detF) = (det F) tr

(
dF
dt

F−1

)

, (B1)

which can alternatively be written as

J̇ = J tr
(
ḞF−1

)
. (B2)

Taking the derivative of (2.3)2, we can write the relation Ḟ = gradv F. Substituting the latter
in (B2), we obtain the identity

J̇ = J div v. (B3)

Appendix C - Explicit Formulae
In the following, we provide the full analytical formulae that have been represented in condensed
form in the main text.

The continuity of the chemical potential (6.19) is
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Equation (6.16) that relates the driving force to the swelling ratio can be further developed
using (5.1)-(5.3), (5.8), (5.9) and (6.29) to write the driving force at the association boundary
as
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(C2)

and at the dissociation boundary as

fd (Jd) = ψ0 (1 + Jd) −
kT
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(C3)
Substituting (5.10) and (6.30) in (6.45) and (6.46), we can write in the physical space

y(J) =
λ2

0D

b sinh
(

ν
kT fa(Ja)

)
{

Nν

λ4
0

[

ln

(
J

Ja

)

+
1
J
−

1
Ja

]

−
Nν

2

(
1
J2

−
1
J2

a

)

+

1
3

(Nν + 2χ − 1)

(
1
J3

−
1
J3

a

)

−
χ

2

(
1
J4

−
1
J4

a

)]

,

(C4)

2



and in the reference space
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Analytical expressions for (6.35) and (6.38) can be obtained by replacing J and Ja in (C4) and
(C5) by J̃ and J̃a. Notice that the determination of Ja is required to use the above relations.
During the evolution along the universal path, the swelling ratio at the association boundary
Ja(t) can be determined using the implicit equation (6.48). The thicknesses ` and `R of the body
in the physical and the reference spaces are obtained by evaluating (C4) and (C5) at J = Jd.

Appendix D - Supplementary Figures

Figure D1: Effect of ψa and λ0 on the universal path. The universal path determined by the numerical simulations
is indistinguishable from that given by the analytical formula (6.46).
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Figure D2: Time evolution of the swelling ratio Ja(t) = J(y, t)|y=0 at the association boundary, during the
diffusion-dominated stage for the four paths initiating in regions I-IV in Fig. 5. Time is normalized by τ1 =
8.2 × 103s.

Figure D3: Time evolution of (a) the swelling ratio Ja(t) and (b) the dry thickness `R(t) at the association
boundary along the universal path for the four initial conditions in regions I-IV shown in Fig. 5. Notice that time
has been reset so that t = 0 corresponds to the time at which evolution along the universal path begins. The
solid curves correspond to the analytical solution (6.48) and (6.46).
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