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1. SDEs and quasi-shuffle algebras
Our goal in this section is to provide an introduction to the role of quasi-shuffle algebras as well
as quasi-shuffle convolution algebras in the development and analysis of strong integrators for
stochastic differential equations. We will assume some basic knowledge of stochastic differential
equations and their strong/pathwise solution. We consider Itô stochastic differential systems
driven by scalar stochastic processes and governed by vector fields of the form:

Yt = Y0 +

d∑
i=1

∫ t
0
Vi(Yτ ) dXi

τ ,

for time interval t∈ [0, T ] for some T > 0. The stochastic solution process Y is assumed to be
RN -valued for some N ∈N. We assume the initial data Y0 ∈RN is a given deterministic vector.
The functions Vi, i= 1, . . . , d, are assumed to be smooth governing vector fields and in general
non-commuting; we explain what we mean by this further below. The Xi, i= 1, . . . , d, are scalar
driving stochastic processes; their precise characterization will be discussed presently. Our goals
in this section are as follows, to:

(i) Illustrate the development of the stochastic Taylor series expansion for the solution Yt to
the Itô stochastic differential system above. The stochastic Taylor series expansion is the
basis of the construction of many classes of strong numerical approximation schemes;

(ii) Demonstrate why a precise understanding of the relationship between the repeated
integrals of the driving stochastic processes Xi is important, first, in the efficient
implementation of strong numerical approximation schemes, and second, in the design of
classes of numerical schemes such as those based on the exponential Lie series. A precise
understanding of the algebraic structure generated by the product of such repeated
integrals is crucial to both of these components in the theory and implementation of
strong numerical approximation schemes; and

(iii) Show how to abstract the relationship between the repeated integrals, first to the
quasi-shuffle algebra, and then second, to one further level of abstraction, the quasi-
shuffle convolution algebra. We demonstrate how this abstraction and the concepts and
structures provided therein, can be used to inform the construction of new numerical
approximation schemes.

As we intend this to be a self-contained introduction there will inevitably be some repetition of
the material in the main manuscript. We have endeavoured to achieve the three goals above with
minimal repetition while at the same time trying to give a broader perspective. Our setting is a
complete, filtered probability space

(
Ω,F , (Ft)t>0, P

)
assumed to satisfy the usual hypothesis;

see Protter [16, p. 3]. We assume the solution process Y ∈RN exists on some finite time interval.
Our first goal in this section is to develop the stochastic Taylor series expansion for the solution

Yt, without loss of generality, about t= 0. We illustrate how this is achieved in the context where
the driving processes Xi, i= 1, . . . , d, are independent Wiener processes. As such the quadratic
covariations [Xi, Xj ] = 0 for all i 6= j. The quadratic covariation of Xi with itself [Xi, Xi] is
known as its quadratic variation.

Remark 1.1. In fact our development of the stochastic Taylor series expansion here is sufficiently
general to allow for the Xi, i= 1, . . . , d, to be continuous semimartingales. These are a
generalization of Wiener processes. The Lévy processes we consider in the main text, which
include jumps, are a different generalization. For a collection of Wiener processes all the quadratic
variations [Xi, Xi]t = t for all i= 1, . . . , d. However, as we see below, our derivation of the
stochastic Taylor expansion allows for more general quadratic variation and indeed is consistent
with the derivation of the stochastic Taylor expansion for the case when the Xi, i= 1, . . . , d, are
continuous semimartingales; see Ebrahimi–Fard, Malham, Patras and Wiese [7] for more details.
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The key tool for developing the stochastic Taylor series expansion for Yt is Itô’s Lemma
(chain rule). For any smooth function f : RN →RN , this states that if Yt satisfies the stochastic
differential equation above, then f(Yt) satisfies (see for example Protter [16])

f(Yt) = f(Y0) +

d∑
i=1

∫ t
0

(
Vi · ∂

)
f(Yτ ) dXi

τ + 1
2

d∑
i=1

∫ t
0

(
Vi ⊗ Vi : ∂2

)
f(Yτ ) d[Xi, Xi]τ .

Let us explain carefully the notation we have used here. For any Y ∈RN we have

(
Vi · ∂

)
f(Y ) =

N∑
j=1

V ji (Y )∂Yj
f(Y ).

In other words when we consider the evolution of any function of the solution, here f(Yt), then
the corresponding first order terms involve the first order partial differential operators Vi · ∂
acting on f(Yt). The noncommutativity of the vector fields above refers to the fact that in general
we assume that any two first order partial differential operators Vi · ∂ and Vj · ∂ with i 6= j do
not commute. Hereafter we take the perspective that instead of the vector fields Vi(Yt) being
functions of Yt as they are in the original stochastic differential equation, they are now first order
partial differential operators Vi · ∂ acting on f(Yt). Naturally when f = id so that f(Yt) = Yt then(
Vi · ∂

)
f(Y ) =

(
Vi · ∂

)
Y = V (Y ), and the evolution equation for f(Yt) reverts to the stochastic

differential equation for Yt. The Itô chain rule also includes second order terms as shown, where
we have used the notation

(
Vi ⊗ Vi : ∂2

)
f(Y ) :=

N∑
j,k=1

V ji (Y )V ki (Y )∂Yj
∂Yk

f(Y ).

The terms [Xi, Xi] represent the quadratic variation of the Xi for i= 1, . . . , d. We now utilize the
following succinct notation. We set

Di := Vi · ∂, D[i,i] := 1
2Vi ⊗ Vi : ∂

2 and X [i,i] := [Xi, Xi].

Then the Itô chain rule takes the form

f(Yt) = f(Y0) +
∑
a∈A

∫ t
0
Daf(Yτ ) dXa

τ ,

where A denotes the alphabet of letters {1, . . . , d, [1, 1], . . . , [d, d]}. We use the terminology
‘alphabet’ and ‘letters’ as opposed to ‘indices’ with an eye on the algebraic structures ahead. This
integral equation applies for any smooth function f : RN →RN . For example we could take f to
be Daf , and the relationship just above holds for the function Daf : RN →RN . In other words
we have

Daf(Yt) =Daf(Y0) +
∑
b∈A

∫ t
0
DbDaf(Yτ2) dXb

τ2 .

Substituting this for the integrand on the right-hand side in the equation for f(Yt), we obtain

f(Yt) = f(Y0) +
∑
a∈A

∫ t
0

(
Daf(Y0) +

∑
b∈A

∫τ
0
DbDaf(Yτ2) dXb

τ2

)
dXa

τ

= f(Y0) +
∑
a∈A

∫ t
0

dXa
τ1 Daf(Y0) +

∑
a,b∈A

∫ t
0

∫τ1
0
DbDaf(Yτ2) dXb

τ2dXa
τ1 .

Now we replace f in the equation above by DbDaf so that we have

DbDaf(Yt) =DbDaf(Y0) +
∑
c∈A

∫ t
0
DcDbDaf(Yτ3) dXc

τ3 .
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Substituting this for the integrand in the double integral term on the first iteration above we find

f(Yt) = f(Y0) +
∑
a∈A

∫ t
0

dXa
τ1 Daf(Y0) +

∑
a,b∈A

∫ t
0

∫τ1
0

dXb
τ2dXa

τ1 DbDaf(Y0)

+
∑

a,b,c∈A

∫ t
0

∫τ1
0

∫τ2
0
DcDbDaf(Yτ3) dXc

τ3dXb
τ2dXa

τ1 .

It is now clear that we can repeat this procedure ad infinitum and the precise form all the
subsequent terms in this series expansion will take. Further let us introduce an even more
succinct notation. Consider a word w= a1a2 · · · an constructed from letters ai, i= 1, . . . , n, from
the alphabet A. Then let us use Dw :=Da1 · · ·Dan to denote the successive compositon of the
partial differential operators shown. Further let us denote

Iw :=

∫
06τ16···6τn6t

dXa1
τ1 · · · dXan

τn .

The iteration procedure above thus produces the solution expansion

f(Yt) =
∑
w

IwDwf(Y0).

Here the sum is over all words/multi-indices w that can be constructed from the alphabet A.
This is the stochastic Taylor expansion for f(Yt). The stochastic Taylor expansion for Yt itself
can be recovered by setting f = id. The stochastic Taylor expansion is the starting point for
strong stochastic differential numerical approximation schemes of higher order beyond the Euler–
Maruyama approximation. In the deterministic setting, and in the stochastic setting, a very useful
concept in the construction of numerical approximation schemes is the notion of the flowmap.

Definition 1.1 (Flowmap). For any smooth function f : RN →RN , we define the flowmap ϕt associated
with the stochastic differential equation above as the map prescibing the transport of the initial data f(Y0)

to the solution f(Yt) at time t> 0, in other words ϕt : f(Y0) 7→ f(Yt).

We note the following. Naturally for the case f = id we have Yt =ϕt(Y0). By substituting this
into the definition of the flowmap we deduce ϕt(f) = f(ϕt). Further, from the stochastic Taylor
expansion we already have an explicit representation for the flowmap, namely

ϕt =
∑
w

IwDw.

Remark 1.2 (Separated stochastic Taylor expansion). The stochastic Taylor expansion for f(Yt)

above, as well as for the flowmapϕt, is separated. It is a sum over terms which are the real product
of the time-dependent stochastic repeated integrals Iw and the time-independent deriative terms
Dwf(Y0). This separated form arose naturally and directly in our derivation of the stochastic
Taylor expansion above which includes the case when the driving processes Xi, i= 1, . . . , d, are
independent Wiener processes, as well as more generally, continuous semimartingales. In the
main text the driving stochastic processes are independent Lévy processes. The derivation of the
stochastic Taylor expansion in this case is more convoluted due to the jumps of a Lévy process and
the analogous derivation to that above does not produce a separated stochastic Taylor expansion
directly. However, as shown in the main text, further Taylor expansion of some of the governing
vector fields eventually results in a separated stochastic Taylor expansion analogous to that above.

Our second goal in this section is to elucidate the relationship between the repeated integrals
Iw in the stochastic Taylor expansion. Here again for the moment, we assume that the driving
stochastic processesXi, i= 1, . . . , d, are Wiener processes. However, in fact, our discussion will be
sufficiently general to apply to the case when theXi, i= 1, . . . , d, are continuous semimartingales.
We provide two demonstrations of why a precise understanding of these relationships is crucial
to the efficient strong numerical simulation of stochastic differential equations. Such strong
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numerical approximations are constructed via finite truncations of the stochastic Taylor expansion
for Yt, or equivalently, the flowmap which is applied to Y0. Assuming that computing the terms
Dw(Y0), which involves computing derivatives of the functions Vi from the original stochastic
differential equation, is relatively straightforward, then the main task is to simulate the repeated
integrals Iw . This is where most of the computational burden in the strong simulation of stochastic
differential equations lies and any possible efficiencies should be utilized. With this in mind we
notice that not all repeated integrals of a given order in the expansion are independent. For
example integration parts, i.e. the product rule, reveals that

IiIj = Iij + Iji + δijI[i,j],

for any letters i, j ∈A and where δij is the Kronecker delta function. Thus for instance if i= j then
we do not need to simulate Iii as we can construct them from Ii ≡Xi and I[i,i] ≡X [i,i]. Or for
example if i 6= j and we have simulated Iij , then we can construct Iji from Iij andXi andXj . We
start to see how a clear understanding of the algebraic structure that underpins the relationships
between the repeated integrals Iw has practical impact on the numerical simualation of stochastic
differential equations. This is our first example demonstrative evidence. Now for our second.
Other classes of numerical methods, for example those which utilize the exponential Lie series,
can be constructed by considering functions of the flowmap. For a given function F : Diff(RN )→
Diff(RN ), such a strong numerical simulation method would be constructed from ϕt as follows:

(i) Construct a new series ψt = F (ϕt);
(ii) Truncate this series to produce the finite expansion ψ̂t;

(iii) Reconstruct an approximate flowmap as ϕ̂t := F−1(ψ̂t); and
(iv) Use ϕ̂t as basis of a strong numerical approximation scheme.

If F = id, the identity map, this approach corresponds to implementing a truncated stochastic
Taylor expansion as a numerical approximation scheme. The archetypical numerical scheme
constructed using the procedure just outlined is the case when F = log. The series expansion
logϕt can be shown to be a Lie series for quite general scenarios, including the continuous
semimartingale context, see Ebrahimi–Fard et al. [7]. As such it is known as the exponential
Lie series. We call the corresponding numerical methods based on this approach Castell–Gaines
methods after their implementation in Castell & Gaines [2]. To construct these methods we
actually need an explicit representation for logϕt. This can be achieved as follows. We in fact
compute F (ϕt) for any function F with the power series representation

F (φ) =
∑
k≥0

ckφ
k,

with coefficients ck ∈R for k ∈N ∪ {0}. By direct computation we see that

F (ϕt) =
∑
k≥0

ck

(∑
w

IwDw

)k

=
∑
k≥0

ck
∑

u1,...,uk

(Iu1Iu2 · · · Iuk )(Du1Du2 · · ·Duk )

=
∑
w

( |w|∑
k=1

ck
∑

u1u2···uk=w

Iu1Iu2 · · · Iuk

)
Dw.

In this calculation the: summations
∑
w are over all possible wordsw that can be constructed from

the alphabet A; summation
∑
u1,...,uk

is over all possible words u1, . . . , uk that can be constructed
from the alphabet A; and summation

∑
u1u2···uk=w

is the sum over all possible collections of k
words u1, . . . , uk that can be concatenated together to make the given word w—all the words
u1, . . . , uk and w are again constructed from the alphabet A. Finally |w| denotes the length of the
word w, i.e. the sum of all the individual letters from the alphabet A = {1, . . . , d, [1, 1], . . . , [d, d]}
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used in the word. We observe that an integral part of the construction above are products of
repeated integrals of the form Iu1Iu2 · · · Iuk . This is our second example demonstrative evidence.
Looking ahead to our third goal which we address presently, we can already see the need to
consider combinatorial calculations, for example we need to consider all possible ways of splitting
the word w into k words which concatenate together to create w. Further we need to consider
the algebra of repeated integrals, i.e. we need to be able to consider linear combinations of real
products of repeated integrals Iw . Before we move onto these structures, let us round off our
second goal in this section with a concrete demonstration of how, for example, the Castell–Gaines
numerical method can be implemented in practice. For simplicity assume there are only two
driving processes so d= 2 and they are both Wiener processes so X1 =W 1 and X2 =W 2. If we
truncate the series ψt = logϕt, then across the computation interval [tm, tm+1] we have

ψ̂tm,tm+1 = Î1(tm)V1 ·∂ + Î2(tm)V2 ·∂ + 1
2

(
Î12(tm)− Î21(tm)

)(
(V1 ·∂)(V2 ·∂)− (V2 ·∂)(V1 ·∂)

)
and then computing the inverse F−1 of this and applying it to the data Ytm , we have

Ytm+1 ≈ exp
(
ψ̂tm,tm+1

)
(Ytm).

The truncated series ψt = logϕt in this case is a Lie series and the terms associated with the
words w= 12 and w= 21 can be expressed in the form shown involving the Lie bracket of
the two vector fields. The hats on the increments Î1(tm) =∆W 1(tm) and Î2(tm) =∆W 2(tm)

and repeated integrals Î12(tm) and Î21(tm) indicate realizations of these random variables—or
suitable approximations thereof. The approximate flowmap is thus ϕ̂tm,tm+1 = exp

(
ψ̂tm,tm+1

)
and is the basis for a strong numerical approximation scheme as outlined in (iv) above. Finally we
compute Ytm+1 in practice by using a suitably high order ordinary differential numerical method
to integrate u′(τ) = ψ̂tm,tm+1(u(τ)), across τ ∈ [0, 1] with u(0) = Ytm , generating u(1)≈ Ytm+1 .

Our third and final goal in this section is to concretely establish the connection between some
specific Hopf combinatorial algebras, namely those involving the quasi-shuffle and concatenation
products, and the analysis of functions of the stochastic Taylor expansion for the flowmap
associated with a given stochastic differential equation. In fact we take this one abstraction step
further and establish the connection between a quasi-shuffle convolution algebra and the analysis
of the flowmap. At this stage we want to include the possibility that the driving stochastic
processes are independent Lévy processes as outlined in the main text. We also want to assume a
separated stochastic Taylor expansion for the flowmap as our starting point and so a few remarks
are required to bridge the gap between our presentation hitherto and the full Lévy process case.
To construct the separated stochastic Taylor expansion for the flowmap when the Xi, i= 1, . . . , d,
are continuous semimartingales, we iteratively applied the Itô chain rule which involved the
driving processes and the full set of quadratic variations [Xi, Xi], i= 1, . . . , d. Once we start
computing the product of repeated integrals further quadratic variations or power brackets
such as [Xi, [Xi, Xi]] will be generated. For the case when the driving stochastic processes Xi,
i= 1, . . . , d, are Lévy processes, then already at the stage of deriving a separated form for the
stochastic Taylor expansion for the flowmap, higher nested power brackets are generated. They
are also generated once we start considering products of repeated integrals. Importantly, the
covariation bracket is both commutative and associative so any nested bracket is invariant to the
order of the processes and bracketing therein; see Curry, Ebrahimi–Fard, Malham and Wiese [4]
for more details. As shown in the main text, provided we extend our alphabet to account for these
higher nested power brackets, then by further Taylor expansions for the vector fields involving
the jump processes, we can derive a separated stochastic Taylor expansion for the flowmap in the
Lévy process case. We thus take as our starting point a separated stochastic Taylor expansion for
the flowmap as indicated above, albeit with an extended alphabet as we have outlined.

The basis for our subsequent development hereafter is the product rule for any two repeated
integrals and our computation for F (ϕt) just above. We assume without loss of generality that
Xi

0 = 0 for all i= 1, . . . , d. From Protter [16, p. 58] and Curry et al. [4, Section 4] for words u, v and
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letters a, b from the extended alphabet A we have the following product rule

Iua(t)Ivb(t) =

∫ t
0
Iu(τ−)Ivb(τ−) dIa(τ) +

∫ t
0
Iua(τ−)Iv(τ−) dIb(τ) +

∫ t
0
Iu(τ−)Iv(τ−) d[Ia, Ib](τ).

Let us denote by A∗ the free monoid over A. This is the set of all words w= a1a2 · · · an that can
be constructed from the letters ai ∈A. We denote the empty word by 1∈A. Let RA denote the
R-linear span of A, and let R〈A〉 denote the vector space of polynomials in the non-commuting
variables in A∗. We assume that [ · , · ] : RA⊗ RA→RA is a commutative, associative product
on RA. The quasi-shuffle product on R〈A〉, which is commutative, is generated inductively as
follows: if 1 is the empty word then u ∗ 1 = 1 ∗ u= u and

ua ∗ vb= (u ∗ vb)a+ (ua ∗ v)b+ (u ∗ v)[a, b],

for all words u, v ∈A∗ and letters a, b∈A. Endowed with the product ‘∗’ just defined, R〈A〉 is
a commutative and associative algebra known as the quasi-shuffle algebra, which we denote by
R〈A〉∗. The connections between [ · , · ] and the quadratic covariation, and then between quasi-
shuffle product of the words ua and vb and the real product of the repeated integrals Iua and Ivb
are immediate. Indeed as outlined in the main text, we can define a word-to-integral map µ : w 7→
Iw which, extended linearly to R〈A〉∗, is an algebra isomorphism. Here we use the convention
that repeated integrals indexed by polynomials are defined by linearity, i.e. Ikuu+kvv = kuIu +

kvIv , for any constants ku, kv ∈R and words u, v ∈A∗. Thus we have established that the algebra
of repeated integrals and the quasi-shuffle algebra have precisely the same structure. Thus for
example, any linear combination of products of repeated integrals has an exact corresponding
representation (under µ−1) and evaluation (under µ) in the quasi-shuffle algebra.

There is another natural algebra implicit in our stochastic Taylor expansion representation for
the flowmap, which we assume has a separated form so that

ϕt =
∑
w∈A∗

IwDw.

The other natural algebra is the algebra associated with the composition of the partial differential
operators Dw . Recall that for any word w= a1a2 · · · an ∈A∗, the partial differential operator Dw
denotes Da1Da2 · · ·Dan , where the partial differential operators are compositionally evaluated
right to left on any suitable target functions. We extend this “product” convention linearly to
any linear combinations of such expressions. At the abstract level on the vector space R〈A〉,
instead of the quasi-shuffle product, we can define another product, namely the concatenation
product. The concatenation product of two words u, v ∈A∗ results in their concatenation uv ∈A∗

which is extended linearly to R〈A〉. Further, we can define a word-to-operator map κ : w 7→Dw
which is an algebra homomorphism. The domain of this homomorphism is R〈A〉 equipped
with the concatenation product, which we denote simply by R〈A〉 hereafter. We thus have two
combinatorial algebras, the quasi-shuffle algebra R〈A〉∗ and the concatenation algebra R〈A〉. We
can consider their completed tensor product R〈A〉∗⊗R〈A〉. Further we see that the flowmap is
the image under µ⊗ κ of the element in R〈A〉∗⊗R〈A〉 given by∑

w∈A∗

w ⊗ w.

Note the product of any two elements u⊗ u′ and v ⊗ v′ in the tensor algebra R〈A〉∗⊗R〈A〉 is
given by (u⊗ u′)(v ⊗ v′) = u ∗ u′ ⊗ vv′; see for example Reutenauer [18].

We now turn our attention to the computation, evaluation and representation of functions
F (ϕt) of the flowmap ϕt. Assuming that F has a power series representation as indicated above,
recall our previous result from computing F (ϕt), namely:

F (ϕt) =
∑
w∈A∗

( |w|∑
k=1

ck
∑

u1u2···uk=w

Iu1Iu2 · · · Iuk

)
Dw.
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We see that this is the image under µ⊗ κ of the element in R〈A〉∗⊗R〈A〉 given by

F

( ∑
w∈A∗

w ⊗ w

)
=
∑
w∈A∗

( |w|∑
k=1

ck
∑

u1u2···uk=w

u1 ∗ u2 ∗ · · · ∗ uk

)
⊗ w.

We have essentially completed our first level of abstraction, the flowmap or any function of it can
be represented in the tensor algebra R〈A〉∗⊗R〈A〉. Note that when computing the function F on
the flowmap, we made a choice to rearrange the sum by collecting all words w on the right of
the tensor ‘⊗’. There is dual procedure which involves collecting all the words on the left instead.
The interested reader should consult Reutenauer [18, Chapter 3], our main inspiration for the
abstractions and computations in this section, for this dual point of view. Back to our convention
above of collecting all the words on the right and combinatorial operations thereof on the left. We
see that we can write∑

w∈A∗

w ⊗ w=
∑
w∈A∗

I(w)⊗ w and F

( ∑
w∈A∗

w ⊗ w

)
=
∑
w∈A∗

F(w)⊗ w,

where I is the identity endomorphism on R〈A〉∗, while also on R〈A〉∗, F is the endomorphism

F(w) =

|w|∑
k=1

ck
∑

u1u2···uk=w

u1 ∗ u2 ∗ · · · ∗ uk.

Remark 1.3 (Quasi-shuffle Hopf algebras). We remark that: (i) Classical introductions to Hopf
algebras can be found in Radford [17] and Sweedler [19]; (ii) It is well-known in some physics
communities that Hopf algebras provide efficient computational methods for working with
groups, see for example Cartier [1] and Manchon [13]; and (iii) As we remark in the main
manuscript, Hudson and collaborators studied quasi-shuffle Hopf algebras in the guise of sticky
shuffle product Hopf algebras in the context of quantum stochastic calculus, see Hudson [9].

We now begin our second level of abstraction, and as such, we have come to the point
where we need to endow R〈A〉∗ and R〈A〉 with a bialgebra structure. A bialgebra is a vector
space equipped not only with a product, but also a coproduct, with the product and coproduct
obeying certain compatability relations. The next section contains a brief overview of the algebraic
concepts; see Reutenauer [18] for more details. We adhere to a minimalist briefing on this here for
simplicity. Let 〈 · , · 〉 : R〈A〉 ⊗ R〈A〉→R denote the bilinear form where, for any words u, v ∈A∗,
we set 〈u, v〉 to be 1 if u= v and 0 if u 6= v. For this scalar product, the free monoid A∗ forms an
orthonormal basis. With this in hand, we can further endow R〈A〉∗ and R〈A〉 with the following
respective coproducts.

Definition 1.2 (Deconcatenation and de-quasi-shuffle coproducts). We define the deconcatenation
coproduct ∆ : R〈A〉→R〈A〉 ⊗ R〈A〉 for any word w ∈R〈A〉 by

∆(w) :=
∑
u,v

〈uv,w〉u⊗ v.

We also define the de-quasi-shuffle coproduct ∆′ : R〈A〉→R〈A〉 ⊗ R〈A〉 for any word w ∈R〈A〉 by

∆′(w) :=
∑
u,v

〈u ∗ v, w〉u⊗ v.

Note for example, the action of the deconcatenation coproduct on a wordw ∈A∗, is to generate
a sum of all of its possible two-partitions u⊗ v including 1⊗ w and w ⊗ 1. Endowed with
quasi-shuffle product and deconcatenation coproduct R〈A〉∗ is a bialgebra. Further, endowed
with the concatenation product and de-quasi-shuffle coproduct R〈A〉 is also a bialgebra. An
endomorphism known as the antipode can be defined for both these bialgebras, and is given
in Hoffman [8]. Equipped with antipodes, both these bialgebras become Hopf algebras. We can
now define the convolution of any two endomorphisms on the quasi-shuffle Hopf algebra R〈A〉∗.
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Definition 1.3 (Convolution product). Suppose G1 and G2 are two linear endomorphisms on the Hopf
quasi-shuffle algebra R〈A〉∗. We define their quasi-shuffle convolution product G1 ? G2 by the formula

G1 ? G2 := ∗ ◦ (G1 ⊗ G2) ◦∆.

In other words, since the deconcatenation product ∆ splits any word w ∈A∗ in the sum of all
its two-partitions u⊗ v, including when u or v are the empty word 1, we have

(G1 ? G2)(w) :=
∑
uv=w

G1(u) ∗ G2(v).

Let us denote by End(R〈A〉∗) the R-module of linear endomorphisms of R〈A〉∗. The quasi-shuffle
convolution product on End(R〈A〉∗) naturally extends as follows

(G1 ? G2 ? · · · ? Gk)(w) :=
∑

u1u2···uk=w

G1(u1) ∗ G2(u2) ∗ · · · ∗ Gk(uk),

for any Gi ∈End(R〈A〉∗), i= 1, . . . , k. By convention if k > |w| then we set the convolution
product to zero. Now recall our endomorphism F ∈End(R〈A〉∗) generated when we computed
the function F of the flowmap. We can now express F as follows,

F(w) =

|w|∑
k=1

ck
∑

u1u2···uk=w

u1 ∗ u2 ∗ · · · ∗ uk

=
∑
k>1

ckI?k(w).

In other words we can identify the flow map with the identity endomorphism I as we have
already indicated, and we can identify the function F of the flowmap with the endomorphism

F?(I) =
∑
k>1

ckI?k.

We have now essentially completed our second level of abstraction. The idea now is as follows.
We assume a given fixed stochastic differential system, i.e. one for which the driving stochastic
processes and governing vector fields are fixed. The extended alphabet and words are thus fixed.
Then different numerical integration schemes based on the map-truncate-invert approach, are
distinguished by their actions on those words represented by the corresponding endomorphisms
acting on them. On further piece in the puzzle is required, a measure to compare the different
remainders generated by different endomorhpisms F?(I). This is provided by constructing an
inner product on End(R〈A〉∗) via a corresponding expectation map which associates the correct
expectation with any word w, i.e. repeated integral Iw , constructed from the extended alphabet.

2. A brief overview of the algebraic concepts
In this section we briefly collect the formal definitions that are at play in our work. For
details the reader is invited to consult [13,17–19]. An algebra over the field K (we took K = R
above) is denoted by (A,mA, ηA) where A is a K-vector space equipped with an associative
product mA :A⊗A→A, that is mA ◦ (mA ⊗ idA) =mA ◦ (idA ⊗mA) :A⊗A⊗A→A and a
unit map ηA : K→A. A K-coalgebra (C,∆C , εC) consists of a K-vector space C carrying a
coassociative coproduct map ∆C :C→C ⊗ C, i.e. (∆C ⊗ idC) ◦∆C = (idC ⊗∆C) ◦∆C :C→
C ⊗ C ⊗ C. The counit map εC :C→K satisfies (εC ⊗ idC) ◦∆C = idC = (idC ⊗ εC) ◦∆C . Its
kernel ker(εC)⊂C is called the augmentation ideal. A coalgebra is called cocommutative if
τ ◦∆C =∆C , where τ :C ⊗ C→C ⊗ C is the flip map τ(x⊗ y) := y ⊗ x. In the following we
use Sweedler’s notation for the coproduct of an element x∈C, ∆C(x) =

∑
x(1) ⊗ x(2) ∈C ⊗ C.

The notion of bialgebra combines both algebra and coalgebra in a compatible way. It consists of a
K-algebra (B,mB , ηB) which is also a K-coalgebra (B,∆B , εB), such that the multiplication mB
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and the unit ηB are morphisms of K-coalgebras with the natural coalgebra structure on the space
B ⊗B. The commutativity of the following diagrams encodes these compatibilities

B ⊗B
mB //

τ2(∆B⊗∆B)

��

B

∆B

��
B ⊗B ⊗B ⊗B

mB⊗mB // B ⊗B

B ⊗B
εB ⊗εB //

mB

��

K⊗K

mK

��
B

εB // K

K
ηB //

∆K
��

B

∆B

��
K⊗K

ηB ⊗ηB // B ⊗B

K
ηB //

idK ��

B

εB��
K

,

where τ2 := (idB ⊗ τ ⊗ idB). Equivalently, ∆B and εB are morphisms of K-algebras with the
natural algebra structure on the spaceB ⊗B. By a slight abuse of notation one writes∆B(mB(b⊗
b′)) =∆B(b)∆B(b′) for b, b′ ∈B, saying that the coproduct of the product is the product of the
coproducts. The identity element in B will be denoted by 1B and we assume that all algebra
morphisms are unital. A graded bialgebra B consists of K-vector spaces Bn, n≥ 0, such that

(i) B =
⊕
n≥0Bn,

(ii) mB(Bn ⊗Bm)⊆Bn+m,
(iii) ∆B(Bn)⊆

⊕
p+q=nBp ⊗Bq.

An element x∈Bn is given the degree deg(x) = n. For a connected graded bialgebraB, the degree
zero part is B0 = K1B . A graded bialgebra B =

⊕
n≥0Bn is of finite type if its homogeneous

components Bn are finite dimensional K-vector spaces. One can show [13] that the coproduct of
any element x∈B is given by

∆B(x) =
∑

x(1) ⊗ x(2) = x⊗ 1B + 1B ⊗ x+
∑′

x′ ⊗ x′′,

where
∆′(x) :=

∑′
x′ ⊗ x′′ ∈

⊕
p+q=n

p>0, q>0

Bp ⊗Bq

is the so-called reduced coproduct, which is coassociative on the augmentation ideal ker(εB) :=

B+ :=
⊕
n>0Bn. Here a variant of Sweedler’s notation is used for the reduced coproduct∆′(x) =∑′

x′ ⊗ x′′. Elements in the kernel of ∆′B are called primitive elements of B. Note that 1B is a
so-called group-like element, i.e. ∆B(1B) = 1B ⊗ 1B .

Let A be a K-algebra and C a K-coalgebra C. The convolution product of two linear maps
f, g ∈HomK(C,A) gives the linear map

(f ? g)(a) :=mA ◦ (f ⊗ g) ◦∆C(a) =
∑

f(a(1)) g(a(2)),

for any a∈C. In other words the convolution is given by the sequence

C
∆C−−→C ⊗ C f⊗g−−−→A⊗A mA−−→A.

From associativity of A and coassociativity of C follows that HomK(C,A) with the convolution
product f ? g for f, g ∈HomK(C,A) is an unital associative K-algebra with unit η := ηA ◦ εC [13].
For a bialgebra B one can define the convolution algebra structure on HomK(B,B) with unit
η := ηB ◦ εB . For maps fi ∈HomK(C,A), i= 1, . . . , n, n> 1, we define the product

f1 ? f2 ? · · · ? fn :=mA ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fn) ◦∆(n−1)
C ,

where ∆(0)
C := idC , and for n> 0, ∆(n)

C := (∆
(n−1)
C ⊗ idC) ◦∆C .
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A Hopf algebra is a K-bialgebra H together with a K-linear map S :H→H called the
antipode; see [17,19] for details. The antipode S has the property of being an antihomomorphism,
i.e. S(mH(x⊗ y)) =mH(S(y)⊗ S(x)) and ∆H ◦ S = (S ⊗ S) ◦ τ ◦∆H . The necessarily unique
antipode S is the inverse of the identity map idH :H→H with respect to the convolution product
S ? idH = ηH ◦ εH = idH ? S. If the Hopf algebra H is commutative or cocommutative, then
S ◦ S = idH . It is a well-known result [13] that any connected graded bialgebraH =

⊕
n≥0Hn is a

connected graded Hopf algebra. The antipode is defined as the convolution inverse of the identity
map, S := id

?(−1)
H . A character φ∈HomK(H,A) is defined to be a unital algebra morphism taking

values in a commutative K-algebra A. An infinitesimal character consists of a linear map ξ such
that ξ(mH(x⊗ y)) = 0 for any x, y ∈ ker(εH). This implies that ξ(1H) = 0, where 1H is the algebra
unit in H .

3. Platen and Bruti–Liberati form
We show that the stochastic Taylor expansion derived in Platen & Bruti-Liberati [15] is an
equivalent though different representation of the stochastic Taylor expansion we give in Theorem
2.1 of the manuscript. The equivalence of the expansions is seen from the identity

∫ t
0

∫
R`−d

(Ṽ−1 ◦ f)(ys− , v)Q(dv,ds) =
∑̀
i=d+1

∫ t
0

∫
R

(Ṽi ◦ f)(ys− , v)Qi(dv,ds).

The expression on the left is the encoding employed by Platen and Bruti-Liberati of the jump
terms in the stochastic differential equation while our encoding is that on the right. The
equivalence is explained as follows. On the left above Q is a compensated Poisson random
measure on R` × R+. The Lévy-driven equation may be written in this form, where V−1(x, v) =∑`−d
i=1 viVi+d(x) and Q is the compensation of the Poisson random measure Q defined such

that Q(B, (a, b]) = #{∆J1
s ∈B1, . . . ,∆J

`
s ∈B` : s∈ (a, b]} for a Borel set B =B1 × · · · ×B` ⊂

R` bounded away from the origin, i.e. 0 /∈ B̄. As independent Lévy processes almost surely never
jump simultaneously (see Cont & Tankov [3, Theorem 5.3]), the measureQ is concentrated on sets
of the form 0× · · · × 0×Bi × 0× · · · × 0 with intensity measure ρ(0× · · · × 0×Bi × 0× · · · ×
0)dt= ρi(Bi)dt. The identity above thus follows. The stochastic Taylor expansion given in Platen
& Bruti-Liberati [15] is of the same form as the expansion we have given, but where the alphabet is
instead {−1, 0, . . . , d}, and the operator associated to the letter −1 is the multi-dimensional shift
Ṽ−1 : f(y) 7→ f

(
y + V−1(y, v)

)
− f(y).

4. Linear vector fields and linear diffeomorphisms
The separated stochastic Taylor expansion has a simple form when the governing vector fields
are linear with constant coefficients and we consider the action of the flowmap on homogeneous
linear diffeomorphisms, say f(y) = Fy, where F = [fij ] is an N ×N matrix. The identity map is
a special case of such a linear diffeomorphism which generates the solution yt directly. In this
case, the operators in the expansion are given by matrix multiplication. We write Vi(y) =Aiy,
where Ai = [aijk] are constant N ×N matrices and consider the action of the flowmap on linear
functions. First, for i= 1, . . . , d by direct computation we find Ṽi ◦ f(y) = FAiy. Moreover, for
i= d+ 1, . . . , ` the higher order differential operators Ṽi(m) withm≥ 2 vanish due to the linearity,
and we obtain (Ṽi ◦ f)(y, v) = v(Vi · ∇)f(y) = vFAiy. The above relation shows in addition that
the term in Ṽ0 ◦ f involving an integral over the jump sizes vanishes. As the functions we act
on are linear, the second order terms of Ṽ0 also vanish. We therefore have Ṽ0 ◦ f(y) = f(V0(y)) =

FA0y. The operators Ṽi act by matrix multiplication. It follows that the operators Ṽw act on linear
functions by matrix multiplication in the reverse order, Ṽa1...ak ◦ f(y) = FAak · · ·Aa1y.
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5. Numerical experiments
Our numerical investigations principally concern the equation dyt =A0ytdt+A1ytdW

1
t +

V2(yt)dW
2
t +A3ytdÑt, whereW 1

t ,W
2
t are Wiener processes and Ñt is a standard Poisson process

with intensity λ. Here V2 is the nonlinear vector field

V2
(
x1, x2, x3, x4

)
=
(

sin(x1), cos(x2), x4,− sin(x3)
)T
,

whilst the constant coefficient linear vector fields are defined by the following matrices

A0 =


0.314724 0.132359 0.457507 0.457167

0.405792 −0.402460 0.464889 −0.014624

−0.373013 −0.221502 −0.342387 0.300280

0.413376 0.046882 0.470593 −0.358114



A1 =


−0.078239 0.155741 0.178735 0.155478

0.415736 −0.464288 0.257740 −0.328813

0.292207 0.349129 0.243132 0.206046

0.459492 0.433993 −0.107773 −0.468167



A3 =


−0.223077 0.194829 −0.061256 −0.313127

−0.453829 −0.182901 −0.118442 −0.010236

−0.402868 0.450222 0.265517 −0.054414

0.323458 −0.465554 0.295200 0.146313

 .

We also considered the special cases where: (i) V2 was set to zero, so we have only
linear coefficients (‘Linear jump diffusion’), and (ii) Ñt was set to zero, so there are only
continuous driving processes (‘Nonlinear diffusion’). We compare the global mean square error
E(sup0≤t≤T |yt − ŷt|2)1/2, estimated by sampling 1000 paths, for two approximations of ŷt: the
Milstein scheme and the order 1 modified antisymmetric sign reverse integrator (mASRI). The
intensity of Ñt was taken to be λ= 50 and the initial condition was y0 = (1, 0.8, 0.6, 0.4)T .

We briefly describe the methods used to generate the iterated integrals. In the absence of
jumps, the integrals

∫t+h
t W 1

s dW
2
s and

∫t+h
t W 2

s dW
1
s were simulated using a truncated Fourier

transform, as detailed in Kloeden and Platen [10]. Where one or more jumps occur in a timestep,
the situation changes. To simulate the integrals

∫t+h
t W i

sdNs and
∫t+h
t NsdW

i
s , we simulate the

W i
t at each jump time, which allows for exact computation of the aforementioned integrals. The

integrals
∫t+h
t W 1

s dW
2
s and

∫t+h
t W 2

s dW
1
s are not independent of the values of W i

t at the jump
times, so the truncated Fourier method becomes impractical. We therefore simulate the W i

t on a
finer grid, incorporating the jump times, and use the trapezoidal approximation of the integrals,
see Milstein and Tretyakov [14]. There are two relevant parameters pertaining to the simulation of
the iterated Wiener integrals: the number of terms p retained in the Fourier series, and the number
of points M used in the trapezoidal approximation. To obtain comparable accuracy for the two
methods we take M = 5(p+ 1). For integrators of order 1, p should scale like 1/h, where h is the
timestep, see Milstein and Tretyakov [14].

As the equation has no explicit solution, we estimate the mean square error by comparing
the sample paths simulated with those obtained by a numerical scheme for the same simulated
driving processes and iterated integrals, but employing a smaller time step. In practice, we
simulate only at the finest scale, and then extrapolate the values to the coarser scale. To obtain
estimates of the computational time, we run and time the code to generate the iterated integrals
at the coarser scales remembering to scale p with 1/h. It is important to note that the mean square
estimates obtained by this method does not include the simulation error for the iterated integrals.
We therefore experimented with different values of p on the coarsest time step (in the figures
below the values of p quoted correspond to the value for p used at the most coarse scale; it is
increased in proportion with 1/h for smaller stepsizes). The relative size of the simulation time
and the evaluation time is key to the effectiveness of the (m)ASRI scheme. As the simulation time
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increases with p, and p scales like 1/h, it can be shown that below a critical step size, the simulation
time dominates the evaluation time, see Lord, Malham and Wiese [11]. This step size depends on
the value of p at the coarse scale, and is lower for the (m)ASRI scheme than the Milstein scheme,
due to the increased evaluation cost of the former.

We show the results of our simulations. In accordance with the theory, in all cases the mASRI
scheme has lower mean square error for a given timestep than the Milstein scheme. We then
plot the mean square error against the CPU time taken in each case, together with the plot of
simulation time versus evaluation time. The time steps employed are typically such that these
values are comparable, although in practice smaller time steps would frequently be used. In all
cases, the evaluation time of the mASRI scheme was greater than the simulation time, whilst the
simulation time often overtook the evaluation time of the Milstein scheme as the timestep became
smaller. Below its critical step size, the mASRI scheme will always be more efficient than the
Milstein scheme. Generically, it tends to outperform the Milstein scheme also for step sizes below
the critical step size of the Milstein scheme, but above the mASRI critical size. If less accuracy is
required, the Milstein scheme may be preferable, although this is not always the case.
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