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S1: Data search for home range size in ungulates
From literature, we gathered estimates on annual home range size (hectare) for adult individuals in species belonging to the taxa Perrisodactyla and Artiodactyla (table S1). The results included estimates of home ranges based on 90-95% contours of KDE or 90-100% MCP. If possible, we chose 90% and 95% contours over 100%, and KDE over MCP, as 90% and KDE show the least within population variation and are assumed to best represent home range size [1]. Estimates should also include an estimate uncertainty (standard error), as accounting for this may affect the results [2]. Only species with estimates of both sexes were included.
For each species we collected information on sex-specific mean body mass (gram), mean annual group size, habitat preferences for landscape openness (open, mixed or closed habitat), feeding type (grazer, mixed feeder or browser) and mating system (table S2). We acknowledge that mating systems are flexible traits that may vary according to local differences in resource distribution and population structure [e.g. 3], but assume that within-species variation in such characteristics is smaller than between-species variation. We thus categorized species as harem, tending, or territorial (including lek species) [4]. As both territorial and lekking males benefit from occupying a spatially restricted area [5] they coincide with regards to our predictions. 
Collared peccary (Tayassu pecari) and wild boar (Sus scrofa) were excluded due to being the only promiscuous and omnivorous species, respectively, in this study. The lesser mouse deer (Tragulus javanicus) was an outlier with regard to body mass, weighing only 1300/1460 g (male/female), but omitting it from the analyses did not qualitatively affect the results and was included in all analyses. Of the original 257 estimates collected, 245 included species with estimates for both sexes, 195 included estimate uncertainty and 200 concerned species with a phylogeny according to Fritz, Bininda‐Emonds [6]. Accordingly, we kept 162 estimates from 22 species for the analyses, covering 90 unique areas on 7 continents (table S1). Of these, nine were studies of four non-ruminant species, and six studies and four species were the tropics, the remaining were studies of ruminants in temperate zones.
Table S1 – Studies with estimates of home range size and associated uncertainty in ungulates included in the analyses, from species with estimates on both sexes and a part of the phylogeny constructed by Fritz, Bininda‐Emonds [6]. The studies were found by literature search in Google Scholar and ISI Web of Science with the following search words: “home range”, “space use”, “area use” or “spatial variation” in combination with “ungulate” or “large herbivore”, and more studies were found from references within these and by identifying underrepresented parts of the phylogeny.
	Species
	Continent
	References

	Alces alces
	Europe
	[7-9] 

	
	North-America
	[10], [11], [12], [13], [14], [15] ,[16], [17], [18]

	
	
	[19], [20], [21], [22]

	Antilocapra americana
	North-America
	[23]

	Axis axis
	Asia
	[24]

	Bison bison
	North-America
	[25], [26]

	Capra ibex
	Europe
	[27], [28], [29], [30], [31], [32]

	Capra sibirica
	Asia
	[33]

	Capreolus capreolus
	Europe
	[34], [35], [36], [37], [38], [39], [40], [41]

	Cervus elaphus
	Europe
	[42], [43], [44], [45], [46], [47], [48]

	Cervus nippon
	Asia
	[49], [50], [51]

	Cervus nippon
	North-America
	[52]

	Dama dama
	Europe
	[53], [54]

	Dama dama
	North-America
	[55]

	Dama dama
	Oceania
	[56], [57]

	Diceros bicornis
	Africa
	[58], [59]

	Equus caballus
	Asia
	[60], [61], [62]

	Equus caballus
	North-America
	[63]

	Equus hemionus
	Asia
	[61], [64]

	Equus zebra
	Africa
	[65]

	Giraffa camelopardalis
	Africa
	[66], [67], [68]

	Muntiacus muntjak
	Asia
	[69]

	Odocoileus hemionus
	North-America
	[70], [71], [72], [73]

	Odocoileus virginianus
	North-America
	[74], [75], [71], [76], [77], [52], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87]

	Oreamnos americanus
	North-America
	[88], [89]

	Ozotoceros bezoarticus
	South-America
	[90], [91], [92]

	Rangifer tarandus
	North-America
	[93], [94], [95], [96], [97], [98]

	Tragulus javanicus
	Asia
	[99]





Table S2 – Species’ characteristics used as explanatory variables in the analyses of home range size. BM = sex specific body mass (kg), GS = group size, H = habitat (O: Open, C: closed, I: mixed, [100]), D = diet (M = mixed feeder, B = browser, G = grazer, [101]), MS = mating system (T = tending, Tr = territorial, H = harem, [102]). 
	[bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: OLE_LINK22]Species
	♂ BM 
	♀ BM 
	GS
	H
	D
	MS
	References

	Capra ibex
	95.00
	45.00
	11.50
	O
	M
	T
	[101], [103], [104], [105], [27], [106]

	Capra sibirica
	90.00
	44.20
	9.41
	I
	G
	T
	[105], [107]
 

	Oreamnos americanus
	69.00
	53.00
	16.45
	O
	G
	T
	[101], [104]

	Bison bison
	469.90
	274.75
	22.20
	O
	M
	T
	[108], [109], [105], [110], [111]

	Alces alces
	440.00
	330.50
	1.35
	C
	B
	T
	[112], [101], [113], [114], [115]

	Capreolus capreolus
	27.68
	26.73
	4.00
	I
	B
	Tr
	[116], [101], [117], [118], [105], [119]

	Ozotoceros bezoarticus
	36.09
	31.31
	2.35
	O
	M
	H
	[116], [120], [114], [91], [92], [121]

	Odocoileus hemionus
	59.60
	45.90
	2.00
	I
	B
	T
	[116], [101], [113], [114], [119], [122]

	Odocoileus virginianus
	68.00
	45.00
	3.25
	I
	B
	T
	[116], [101], [114], [119]

	Rangifer tarandus
	136.67
	88.87
	3.40
	O
	M
	H
	[123], [124], [104], [27], [114], [125]

	Axis axis
	88.00
	55.00
	10.80
	I
	M
	T
	[123], [116], [113], [114], [105]

	Cervus elaphus
	160.00
	107.50
	5.50
	I
	M
	H
	[126], [116], [101], [114], [105], [119]

	Cervus nippon
	79.87
	50.13
	3.50
	I
	M
	Tr
	[127], [101], [125], [114], [128], [105], [129] 

	Dama dama
	71.00
	41.20
	4.35
	I
	M
	Tr
	[130], [101], [119], [114], [131]

	Muntiacus muntjak
	22.50
	20.00
	1.32
	C
	M
	Tr
	[132], [124], [101], [114]

	Antilocapra americana
	53.60
	46.80
	12.25
	O
	M
	Tr
	[133], [101], [130], [105]

	Giraffa camelopardalis
	1200.00
	800.00
	5.50
	O
	B
	T
	[66], [134], [135], [136]

	Tragulus javanicus
	1.30
	1.46
	1.06
	C
	B
	Tr
	[132], [109]

	Diceros bicornis
	1179.00
	1179.00
	2.33
	I
	B
	T
	[137], [138], [139]

	Equus zebra
	247.80
	219.10
	7.50
	O
	G
	H
	[111], [62], [140]

	Equus hemionus
	250.00
	250.00
	17.46
	O
	G
	H
	[61],  [64]

	Equus caballus
	350.00
	320.00
	8.60
	O
	G
	H
	[63], [141], [62], [61], BM: pers.comm. Kaczensky, P





[bookmark: OLE_LINK16][bookmark: OLE_LINK17][bookmark: OLE_LINK21]Supplementary Material S2: Statistical procedures and methodological considerations regarding analyses of home range size variation in ungulates
We considered home range size to follow a power law-like relationship with metabolic requirement, i.e. body mass and group size [142]. Home range size (hectare), body mass (gram), and mean annual group size were therefore ln-transformed. This also gave normal distributed residuals from the final models. Standard errors (se) of the home range size estimates were transformed using the delta method, i.e. the product of the derivative of the transformation ln(x) and the untransformed se(x). Because body mass and group size describe the realized metabolic requirements of an individual and their absence may confound the effects of the remaining variables [113], they were included in all models. The model including only body mass and group size served as the null model.  
[bookmark: OLE_LINK12][bookmark: OLE_LINK13]Testing effects of species’ traits (Supplementary Material, table S2) on home range size was done by adding them as main effects, whereas interactions between traits and body mass or group size were used to investigate variation in allometric slopes. Due to low sample size for some combinations of habitat and diet, we could not test for differences in allometric slopes between habitat and diet simultaneously. Furthermore, as these species’ traits are closely integrated with each other [100], and may therefore be prone to statistical collinearity. The absence of collinearity was ascertained through qualitatively stable parameter estimates [143,144] regardless of inclusion of several species traits. For instance, collinearity barred the possibility of including degree of polygamy in the analyses because its inclusion led to unstable parameter estimates. Hypotheses (see figure 1 in the article) were otherwise tested within the same model.
Species in Artiodactyla and Perrisodactyla are often considered ruminants and non-ruminants, respectively. The differences in energy intake of ruminants and non-ruminants may be balanced by increasing digesta retention and decreasing particle size, respectively [145,146]. However, ruminating limits movement, and it is not clear whether the time spent ruminating is balanced against the increased chewing time in non-ruminants [146]. Wider diet tolerance enables non-ruminants to utilize a larger range of habitat types [147], which in turn may decrease the home range size [148,149]. We assumed that these factors may balance each other with regard to home range sizes of ruminating and non-ruminating ungulates. This was ascertained by adding a term distinguishing ruminants from non-ruminants to the null model and highest ranked model (see table 1). There was no evidence for differences in home range size between ruminants and non-ruminants (βruminant vs non-ruminant = 1.10, CI: -4.13, 6.58, ∆DIC = 0.48, and βruminant vs non-ruminant = 1.24, CI: -3.59, 5.38, ∆DIC = 0.62, for null model and highest ranked model, respectively). 
Using the studies including estimates from both sexes (n = 108) we also analysed the relationship between the ratios of home range size and body mass, defined as log2(male/female). A ratio of zero indicates absence of sex dimorphism, whereas a ratio of 1 indicates twice as large body mass or home range of males compared to females, and -1 indicates twice as large home range or body mass of females compared to males. We expected the slope between log2(HRMale/HRFemale) and log2(BMMale/BMFemale) to be larger than 1 as males were predicted to use larger home ranges than females for a given sexual size dimorphism. 
Models were fitted using package MCMCglmm [150] in R version 3.2.2 [76], and ranked according to the Deviance Information Criterion [DIC, 151], where candidate models with ∆DIC < 2 were considered to receive similar support given the data. One could argue for more or less conservative thresholds [151], but given that subsequent models, ranked according to information criteria, only add one or few parameters to the highest ranked model it is limited how competitive they actually are [152]. In Gaussian models with relatively few effective parameters DIC behaves similar as AIC [153], but accounts for the parameter uncertainty, which is crucial in meta-analyses [154]. In addition, 95% credible intervals were used to assess parameters’ importance in explaining home range size variation.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Models were set to run for 1 000 000 iterations with a burn-in of 100 000 and thinning of 500, and average DIC values over three replicates were used to ensure convergence and consistency in ranking. Models were not sensitive to choice of priors. The priors for the variance components were half-Cauchy distributions with scale parameter 25 and variance and belief parameter to V = 1 and  = 1, respectively. Posterior medians were chosen as point estimates [155]. Priors for fixed effects followed a normal distribution with mean zero and large variances (V = 108), and an inverse-Gamma with ν=2*shape, and V = shape/scale, with shape=scale=0.001 for the residuals. The model estimates were not sensitive to choice of prior, e.g. the estimated variance for species using half-Cauchy with a scale = 25, weak prior and weak improper prior were 1.65, 1.71 and 1.82, respectively. Following Gelman [156] we used half-Cauchy with scale = 25, as this is considered suitable for random predictors with < 5 groups. To improve mixing and confer less information with variances at small values we used parameter expanded parameters [alpha.mu=0,alpha.V=25^2, 156].
Methodological sources of variation, such as choice of method [157] and estimate uncertainty [2], may cause biased and anti-conservative estimates, and should be accounted for before drawing conclusions based on the results from the models. Furthermore, shared ancestry of species may affect the present observations, although this is less relevant for behavioural traits [158]. By considering phylogeny, estimate uncertainty and sampling method as nuisance terms we may ensure more correct estimates both in terms of a covariate’s effects size [119] and uncertainty [159], and predicted home range variance, respectively. As such, the effect of these considerations may alter apparent relationships (figure S2), and thus increase the understanding of how biological and methodological components may covary and make up the observed variation. We accounted for these challenges by the following analytical approaches: 
Models were run in four parallel sessions with one of the following phylogenies as random effects [159]: 1) dated phylogeny [figure S1, 6], 2) Grafen branch length transformation [160], 3) random evolution since divergence [161], and 4) star phylogeny (i.e. no phylogenetic effects). 
Estimate uncertainty, also called measurement error [159], includes both sampling noise (such as sample size and choice of methodology) and natural variation (such as behaviour and demography). Several measurements per species may account for some of the natural variation at the within species level. To account for repeated measurements, species and study area were added as random effects [159]. VHF-based estimates on home range size are often based on fewer locations, which may lead to smaller home range estimates [162]. Sampling method (GPS, VHF or visual observations) was therefore included as a random effect in the statistical models (see below for further details). Assuming that part of the within-species variation in home range size was caused by ecological differences, i.e. natural variation, rather than being simply an effect of number of animals tracked, we fitted a random-effect meta-analysis models with estimates not weighted and weighted according to their estimate uncertainty [159]. This implies that there is not one true effect size of e.g. diet across studies due to differences in forage availability, but overall the studies will converge to similar values. It also relaxes the assumption of no residual variation inherent in  alternative phylogenetic analyses [e.g. 119] where species’ (non-phylogenetic) variation is confounded with residual variation [159]. 
Accounting for estimate uncertainty had only a small effect on the ranking of candidate models (table S3) and led to a small increase in parameter uncertainty (appr. 0.7%, Supplementary Material, table S4), but the five highest ranked models had similar fixed-effect structure regardless of estimate uncertainty (table S3). Similarly, the ranking of the top candidate models was similar for the four sessions with different phylogenetic random structure (table S3). This supports previous findings that behavioural traits show low phylogenetic signal compared to the effects of morphological and life history traits [158] and a low or no effect of branch length transformation [163]. The phylogenetic signal, H2 [similar to Pagel's lambda, 164] was slightly underestimated when not accounting for estimate uncertainty (0.21 to 0.18, Supplementary Material, table S4). The proportionate change in variance components [PCV, 165] to the null model, show that the fixed effects have phylogenetic dependencies (PCV = 0.16) which reduces the phylogenetic signal. 
Accounting for the estimate uncertainty increased both parameter uncertainty and the power to detect the phylogenetic signal present, but had no qualitative effect on our conclusions. 
The highest ranked model had a marginal R2 = 0.33 (accounting only for fixed effects), and a conditional R2 = 0.98 (also accounting for random structure). A large proportion of variance components (VC) explaining variation in home range size was attributed to sampling method (VC = 0.38, PCV = -0.22). In support of previous studies [1,166,167], the random structure suggested that home ranges derived from GPS locations were larger than those from VHF and visual observations (γ = random intercept: γGPS = 0.48 [-1.40, 2.23], γVHF = -0.74 [-2.66, 0.92], γVisual = -1.52 [-3.87, 0.37]). The larger estimates of home range size from GPS-based locations can be due to both increasing number of locations included, but also that GPS-data may capture excursions not observed using VHF or visual sampling [166]. However, any differences in effect size between sampling methods may depend on how the characteristics of the study area affect sampling strategy and the movement behaviour of the animal. For instance, differences in habitat structure may affect both the recorded locations and the movement characteristics of the animals [168]. The proportion of variance attributed to study area (VC = 0.29, PCV = 0.28) and species (VC = 0.10, PCV = 0.56) further supports usage of random effect meta-analysis.


Figure S1 – Phylogeny [6] of species included in the analyses. A Grafen branch length transformation assumes increasing covariance between species with number of descendants from a shared node in the phylogeny, i.e. branch length increase with number of descendants [160], and one assuming random evolution where the variance is equal to time since divergence, i.e. branch length is set to one [161]. In the fourth session we ignored phylogeny (i.e. star phylogeny). 
[image: ]



[bookmark: OLE_LINK14][bookmark: OLE_LINK15]Supplementary Material S3: Detailed presentation of results from a meta-analysis of home range size variation in ungulates
Unless otherwise specified, estimate uncertainty and dated phylogeny has been accounted for in the results, and 95% credible intervals are given in square brackets.
[bookmark: OLE_LINK5][bookmark: OLE_LINK11]Mean group size among species (see table S1) was 7.55 ± 1.56 SE (among studies 5.38 ± 0.42 SE), whereas mean body mass and annual home range size (mean of the within-species mean) among females and males were 185.2 ± 60.1 kg and 577.34 ± 364.3 km2, and 236.1 ± 71.5 kg and 210.6 ± 121.6 km2, respectively. 
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]The highest ranked model included species habitat preferences and its interaction with body mass (∆DIC to the highest ranked model without habitat = 5.88, table S3). Species living in open habitats had overall largest home ranges after accounting for body mass and group size, whereas species living in mixed habitats had smallest home ranges (figure S2, table S4). The allometric relationship between body mass and home range size was steeper for species living in mixed habitats, and most shallow for species in open habitats (table S4, note that units have been changed for illustrative purposes in figure 1).
Candidate models including mating system, diet, and sex, either in interaction with body mass or group size, or as main effects, did not receive firm support. Although ΔDIC for some of these candidate models was quite low (e.g. ΔDIC = 0.13 for the model including diet as a main effect, table 1) they were extensions of the highest ranked. It is then important to keep in mind that despite apparent support they provide little additional information when not affecting the remaining variables and as such should not be presented as truly competitive  [152,169]. Furthermore, the associated confidence intervals of the parameter estimates for these variables were very wide and included zero (e.g. diet: βGrazer vs βBrowser = -0.43 [-2.95, 2.56], βGrazer vs βMixed = -0.42 [-2.70, 2.18], βMixed vs βBrowser = -0.01 [-1.64, 1.86],  mating system: βHarem vs βTending = -0.45 [-2.38, 1.53]; βHarem vs βTerritorial = -0.43 [-2.70, 1.64], βTending vs βTerritorial = -0.04 [-1.76,1.85], sex: βMales vs βFemales = 0.16 [-0.17, 0.52]). A further confirmation of the lack of sex-differences in home range size was that the relationship between log2-ratio home range size and log2-ratio body mass between males and females did not differ significantly from 1 (β = 0.55 [-0.29, 1.40]).
[bookmark: _Toc430072696][bookmark: _Toc430072811]Table S3 – The highest ranked models (∆DIC < 2) and the null model (italic font) explaining the variation in annual home range size (ln-hectare) among ungulates. Model selection was run in four parallel sessions where phylogeny were accounted for either by dated branch lengths, transformed branch lengths [160,161] or without phylogeny (star phylogeny). ‘Grafen’ transformation implies that clades with more descendants are covary stronger than clades with fewer descendants, ‘One’ assumes a random evolution since divergence.  indicates whether estimate uncertainty was accounted for or not.  Abbreviations: H = habitat, BM = body mass (gram), D = diet, GS = group size, MS = mating system. K is the number of parameters. BM and GS were ln-transformed and included as main effects in all models. Note that for illustrative purposes, figure 2 show the predicted relationship with annual home range size and body mass expressed as km2 and kg, respectively.
	
	Rank
	H
	BM × H
	D
	Sex
	Sex × GS
	MS
	
	Dated
	Grafen
	One
	Star

	
	
	
	
	
	
	
	
	K
	DIC
	DIC
	DIC
	DIC

	Yes
	1
	×
	×
	
	
	
	
	5
	275.69
	275.83
	275.60
	275.12

	
	2
	×
	×
	×
	
	
	
	6
	275.92
	276.23
	275.73
	275.29

	
	3
	×
	×
	
	
	
	×
	6
	276.17
	276.64
	276.45
	275.38

	
	4
	×
	×
	×
	
	
	×
	7
	276.55
	276.87
	276.70
	275.70

	
	19
	 
	 
	 
	 
	 
	 
	2
	281.57
	281.71
	281.67
	281.10

	No 
	1
	×
	×
	
	
	
	
	5
	265.25
	265.31
	265.14
	265.11

	
	2
	×
	×
	×
	
	
	
	6
	265.42
	265.64
	265.51
	265.29

	
	3
	×
	×
	
	
	
	×
	6
	265.70
	266.02
	265.91
	265.38

	
	4
	×
	×
	×
	
	
	×
	7
	266.08
	266.36
	266.24
	265.78

	
	5
	×
	×
	
	×
	×
	
	8
	266.60
	266.43
	266.52
	267.42

	
	6
	×
	×
	×
	×
	×
	
	9
	266.65
	266.40
	266.59
	267.42

	
	7
	×
	×
	
	×
	×
	×
	9
	266.81
	267.05
	267.20
	267.49

	
	8
	×
	×
	×
	×
	×
	×
	10
	267.04
	266.79
	267.39
	267.77

	
	32
	 
	 
	 
	 
	 
	 
	2
	277.83
	278.00
	277.95
	277.24





[bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK18]Table S4 – Parameter estimates and variance components from the highest ranked models explaining the variation in annual home range size (ln-hectare) in ungulates, with dated phylogeny (table 1), accounting for measurement error (or not. Allometric slopes (body mass, BM, ln-gram) and elevation estimates (95% confidence intervals) are given for each habitat, with pMCMC values (two times the probability that the β has the opposite sign, based on an effective sample size 1850) given for contrast estimates against the reference level (closed habitat). GS = ln-group  size. Bottom rows show proportions of the variance component (VC) medians, and the proportion change in the variance (PCV) from the null model [165], where negative estimates indicates an increase in the variance attributed the given component from the null model. Note that for illustrative purposes, figure 2 show the predicted relationship for the model including  with home range and body mass expressed as km2 and kg, respectively. 
	[bookmark: OLE_LINK9][bookmark: OLE_LINK10]
	
	
	Not including 

	
	
	β
	95% CI
	pMCMC
	βm
	95% CI
	pMCMC

	Habitat
	Closed
	-6.09
	-14.56;1.65
	0.150
	-5.92
	-13.40;1.43
	0.140

	
	Mixed
	-10.28
	-17.99;-3.19
	0.401
	-11.67
	-18.82;4.90
	0.248

	
	Open
	3.60
	-5.02;10.61
	0.098
	3.02
	-4.31;10.07
	0.107

	BM × Closed habitat
	1.13
	0.39;1.79
	0.008
	1.12
	0.44;1.82
	0.001

	BM × Mixed habitat
	1.44
	0.88;2.03
	0.499
	1.55
	0.97;2.03
	0.323

	BM × Open habitat
	0.48
	-0.08;1.09
	0.157
	0.47
	-0.04;1.04
	0.163

	GS
	
	0.30
	-0.82;1.36
	0.596
	0.26
	-0.82;1.47
	0.640

	
	
	
	VCm
	PCVm
	VC
	PCV
	

	
	
	
	0.21
	0.16
	0.18
	0.08
	

	
	
	
	0.10
	0.56
	0.11
	0.58
	

	
	
	
	0.29
	0.28
	0.25
	0.02
	

	
	
	
	0.38
	-0.22
	0.33
	-0.25
	

	
	
	
	0.03
	0.10
	0.02
	0.05
	





Figure S2 – Variation in annual home range size (km2) of species belonging to Artiodactyla and Perissodactyla in relation to species’ a) habitat preference, b) mating systems, c) diet, and d) sampling method of locations. The central horizontal bar is the median, hinges represent the 25th and 75th percentile, whereas the whisker extends from the hinge until the most extreme value within 1.5 times the inter-quartile range.
[bookmark: _GoBack]
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