
Supplementary material for " Patterned Surface Charges coupled with 

Thermal Gradients may Create Giant Augmentations of Solute Dispersion in 

Electro-Osmosis of Viscoelastic Fluids" 

A: Analytical Solution Procedure 

 

 Using the non-dimensionalisation scheme discussed earlier, the continuity, momentum, 

energy and charge distribution equations are rewritten in the following way: 
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In equations (A2)-(A3), χ
 
is the ratio of the length scales in the longitudinal and transverse 

directions ( )h lχ =  and TPe  is the thermal Peclet number ( )T p HS ref
Pe C u h kρ= . Here, 

ref ref
λ ζ φ=  is the ratio of the induced potential and the applied potential and 

1 6
1 ,

ref
Tβ α=  

2 5 6 ,β α α=  
3 3 6 ,β α α=  

4 4 6β α α=  are the parameters showing the temperature dependence 

of the physical properties while 
0 0 hκ κ=  is the inverse of the dimensionless EDL thickness with 

( )2 2

0 0
2

ref B
n z e k Tκ ε= . Besides, the thermal perturbation to the system can be characterized 

by the parameter 6 Tξ α= ∆ . Also, we define a new variable ( )T ref
h h kν =  to take into account 

the convective heat loss to the surrounding. Interestingly, this variable is nothing but the well-

known dimensionless number Biot number (Bi) which is the ratio of the conductive heat transfer 

from the solid surface to the convective heat transfer in the surrounding. Now, considering the 

case of low surface potential, the simplified charge distribution along with the current continuity 

equations are presented below 
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After using the relevant scales, the dimensionless forms of the stress components for a 

viscoelastic fluid take the following form: 
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where the Deborah number ( )
0 0ref HS

De uκ λ κ=  represents the extent of viscoelasticity of the 

fluid wherein 
0

0Deκ =
 
corresponds to Newtonian fluid. Now, the boundary conditions described 

by equation (8) of the manuscript are rewritten in their respective non-dimensional forms    
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where 
t lω ω=

 
is the patterning frequency of modulation in dimensionless form. To obtain the 

flow and temperature fields from the set of above dimensionless forms, we have performed an 

asymptotic approach followed by the classical lubrication approximation theory. [1–4] 

            In typical microfluidic applications, the length scale in the transverse coordinate is very 

small as compared to the longitudinal coordinates ( )l h� . In the limit of 0χ → , the terms 

involving ( )O χ  and ( )2O χ
 
can be discarded and the simplified momentum and the stress 

components become  
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From equation (A8), it is clear that 0
yy

τ =  and a relationship between the stress components xxτ  

and 
yx

τ  can be established. Meanwhile in the energy equation, the conduction terms cannot be 

neglected even in the limit of 0χ →  because of their relative strengths with respect to the other 

terms. This can be done simply by doing an order of magnitude analysis of these two terms 

where one can compare their relative strengths with respective to heat generation term due to 

Joule heating. The characteristic temperature in the axial and transverse directions are scaled as  
2 2~

x ref ref ref
T E l kσ∆

 
and 

2 2~
y ref ref ref

T E h kσ∆
 

respectively and hence, 

2 2 2~ ~ 1x yT T l h χ −∆ ∆ � . Since the scales of the diffusive terms are expressed as xTχ ∆  and 

y
T χ∆

 
respectively, they are comparable to each other (i.e. xTχ ∆

 
~ y

T χ∆ ) and also in the 

same order with the heat generation term and therefore, these terms cannot be neglected in the 

energy equation even in the limit of 0χ → . [3] Similarly, to determine the relative contributions 

of the convective components, we use the scales of xT∆

 

and y
T∆

 

and their ratio becomes 

2 2~ 1, . .,x yT T l h i e T y T x∆ ∆ ∂ ∂ ∂ ∂� � .

 

Additionally, one can assume that the surface 

potential is very small as compared to the applied potential, i.e., 1
ref ref

ζ φ λ= �

 

and the terms 

involving ( )O λ  and its higher orders can be neglected thereby resulting the following simplified 

forms:   
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Now we compare the relative contributions of the terms of the charge distribution described by 

equation (3) of the manuscript. Choosing appropriate scales of the respective parameters, i.e. 
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where D lλ <<  and 
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χ

κ λ
<< ; which is negligible compared to the second term and the simplified form is now 

written below

                                        

                                      

 

( )

( )

2

0
2

1

1

4

1

1
1

and 1 0

T
T y y

d
T dy

x dx

κ ψ ψ
ξ β

ξ β

φ
ξ β

−

 ∂ ∂
= −  

+ ∂ ∂  


  ∂ + =   ∂    
∫

  (A11) 

By choosing the typical values of the pertinent parameters (these values are shown in the Results 

and Discussion section), one can show that 
2

2 1
2

ξ β χ

λ
�  and the momentum components are then 

reduced to the following form                    
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Since the axial variation of the temperature in the x co-ordinate is more significant compared to 

the y co-ordinate, one can expand the temperature distribution in an asymptotic series in the 

following manner   

 ( ) ( ) ( ) ( )2 3

0 1 2
, ,T T x T x y T x y Oν ν ν= + + +   (A13) 

where ν  characterizes the rate of heat loss to the surrounding. Now, we utilize this expansion 

along with the two thermal boundary conditions and integrate the energy equation over the entire 

domain  
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As discussed earlier in the manuscript, ν
 
turns out to be a small quantity as compared to unity. 

Physically, lower value of ν
 
corresponds to lesser convective heat loss to the surrounding which 

in turn influences slightly the velocity and temperature distribution within the flow domain. To 

incorporate this small change, we have chosen ν
 
as perturbation parameter along with ξ . 

Subsequently, the energy equation described by equation (A14) becomes the leading order (zero 

order) solution with respect to ν
 

and hence, mathematically, ν  should be absent in this 

expression. However, since this equation is obtained by integrating equation (A10) in the 

transverse direction, ν  comes naturally in equation (A14) through the convective thermal 

boundary condition. Now, the potential distribution for the patterned electrothermal flow is given 

by   
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Using typical values of the involving parameters, one can show that ( )1 2 1β β ξ− �

 

and 

2

1 2 1β β ξ � . Hence, the potential distribution is simplified and takes the following form
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Using the expansion of equation (A13), the set of governing equations are rewritten below
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The simplified stress components (after substituting 0
yy

τ = ) are also expanded in a similar way                                                         
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In order to solve the equations (A17)-(A18), we have used an asymptotic approach which is 

described in detail in Section B of the supplementary material. 

Limiting Cases 

 On the basis of the present asymptotic analysis, we investigate some limiting cases. 

Case 1: If we substitute 0ξ = , the velocity profile reduces to the following form:   
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which represents the flow field for a patterned electroosmotic flow of a viscoelastic fluid in 

absence of any thermal perturbation with the coefficients given in Section C of the 

supplementary material. Further simplification is possible by substituting 2 10, 1α α= =   

 
( )
( ) ( )

( ) ( ) ( ) ( )
2

0

0 0 0 03

0 0

cosh
1 cosh 3 9cosh cosh 3 9cosh

cosh 6cosh

y De
u y y

κ δ
κ κ κ κ

κ κ

 
= − − − − +    
 

 (A20) 

which is the velocity profile for purely electroosmotic flow of viscoelastic fluid through parallel 

plate microchannel. [5] 

Case 2: If we substitute * 0De = , the velocity profile reduces to the following form:   
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which is the velocity distribution for patterned electro-thermal flow of a Newtonian fluid. This is 

further reduced to, on substitution of 2 10, 1α α= =       
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The expressions for 0,0,0T  and 
1,0

d dxφ  can be found in Section F of the Supplementary 

Material. 

A1: Assumptions behind the Poisson-Boltzmann distribution  

 While obtaining the charge distribution, we have assumed that the Poisson-Boltzmann 

description remains valid. This assumption is based on the fact that ions are point charges and 

they are in local equilibrium. Under this condition, one can neglect the contribution of the 

advection term in the Poisson-Nernst-Plank equation when the value of ionic Peclet number 
iPe
 

is very small as compared to unity ( )1iPe � . From definition, 
iPe
 
is written as 

i refPe u h D=
 

where 
refu

 
is the characteristic velocity scale defined by 2

~ref ref ref refu hε ζ µ . In typical 

microfluidic applications, 
10 1 1~10 CV m ,

ref
ε − − −

 
2~10 V,

ref
ζ −

 
3~10 Pa.s,

ref
µ −

 
and 

9 2 1~ 10 m sD − − [6]
 

which yields ( )6
~ O 10 1

i
Pe

−
� . In this context, it is also necessary to 

mention that the Poisson-Boltzmann description of the charge distribution breaks down in 

presence of finite sized ionic species in which one needs to take into account a more realistic 

model, commonly termed as modified Poisson-Boltzmann equation. [7–9] Accordingly, the 

present analysis is valid only when the effect of ionic mobility and finite size (also known as 

steric factor) are neglected.   

 



B: Asymptotic Solution of Equations (A17)-(A18) 

 To obtain the asymptotic solution, we have used the well known regular perturbation 

technique where ξ  is chosen as the gauge function to show the effect of thermal perturbation in 

the flow and temperature distribution. As already discussed, ξ  depends strongly on the induced 

temperature difference ( )T∆  and the temperature sensitivity parameter ( )6α . To get a physical 

relevance, we have first extracted the data points of the viscosity reduction as a function of 

temperature, as reported by Huang and Yang. [10]  Then, regression analysis of this data points 

is performed where these are fitted in the form of ( ){ }6expeff refT Tµµ µ α α= ⋅ − −  (this form of 

viscosity variation is used in the mathematical formulation) and the values of the fitting 

parameters are obtained as 0.9768µα =  and 6 0.0175α = K
-1

 respectively. As already discussed, 

the maximum T∆  is ~ 20 K up to which linear dependence with temperature is observed. Thus,  

choosing 
6 0.0175α =  K-1 and 20T∆ ≤  K implies that the maximum possible value of the 

perturbation parameter can be chosen up to 0.35 while for small T∆ , this is obviously a very 

small quantity.   

 

In the limit of 0ξ → , any variable γ  can be expanded in the following way   

 2

0 1 2γ γ ξ γ ξ γ= + + + ⋅⋅ ⋅ ⋅ ⋅   (B1) 

For leading order, i.e. ( )0
O ξ , the set of equations are given below  

Figure 1. Normalised variation of viscosity (of a liquid having similar dependence of 

physical properties like water) with temperature.[10] Symbols represent the data points 

reported by Huang and Yang while solid line shows the fitted curve according to our 

functional relationship. 
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For first order, i.e. ( )1O ξ ,  
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The boundary conditions described by equation (A6) are rewritten in the following manner: 
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Now, the stress component used in equation (B3) is substituted by the following expression  
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where symmetry condition is taken into account at the channel centreline, i.e. ( ),0 0 0
xy

yτ = = .  

Hence, the simplified momentum equation in the leading order takes the form     
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To solve this non-linear equation, one needs to use the same asymptotic approach and the 

variables are expanded in a similar fashion using *De  as the perturbation parameter defined as 
* 2De De= . Hence, all ( )O 1  terms represent the Newtonian contribution while ( )*O De  and 

higher order terms are showing the viscoelastic counterpart. Now, the variables are expanded in 

the following way 
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Here, all terms with subscript 0,0 represents the leading order solution, i.e. the Newtonian 

contribution part while subscripts like 0,1 and 0,2 correspond to their viscoelastic counterpart 
Now we expand the variables of equation (B8) and the equations are given below  
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For ( )*O De :    
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        (B10) 

Now the solution of equation (B9) subjected to the no-slip boundary condition is given by 
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  (B11) 

where the pressure gradient 0,0
dp dx  is yet to be determined. This can be done by invoking the 

continuity equation to determine the v-component of the flow field which is then subjected to the 

impermeability condition at the surfaces ( )0
1 0v y = ± =   and yields    
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       and
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Similarly proceeding, the solution of equation (B10) is given by
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   (B14) 

along with the pressure distribution
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      (B15) 

The coefficients of equations (B12)-(B15) are given in Section C. Once the velocity distribution 

is known, one can evaluate the corresponding temperature and potential distribution 
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  (B16) 

                                         and                   
0 1 xφ = −   (B17) 

The coefficients of equation (B16) can be found in Section D. 

Knowing the leading order temperature and potential distribution, one can calculate the 

higher order potential distribution, as evident from equation (B4)   
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  and   
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(B19) 



Once 0
φ

 
and 1

φ
 
are known, the electrothermal body force ( )x

F  in the momentum equation can be 

evaluated as 
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0 0
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y d
F x d y

dx

κ φ
κ α α ω

κ κ−
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The solution for the set of equations of ( )1
O ξ  described by equations (B4)-(B5) are presented in 

Section E. Once the solution is obtained, volumetric flow rate Q
 
through the microchannel can 

be calculated as    
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∫ ∫

∫
       (B21) 

where the solution is presented corrected up to the first order ( )1O ξ  because of the inherent non-

linearity of the governing equations. 

C: The coefficients of Equations (B12)-(B15) 
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D: The coefficients of Equation (B16) 
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where 12b  represents the leading order volumetric flow rate through the microchannel i.e., in 

absence of any thermal perturbation.

 
E: The solution of Equations (B4)-(B5) 

 First, we have obtained the stress component of the first order which in turn is used to 

determine the flow field                          
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To solve this equation (E2), we have again used the same approach and the variables are 

expanded as follows 
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Thus, equation (E2) is splitted into two following set of equations 
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The solution of equation (E3) is given by   
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where 
1,0dp dx

 
is obtained in a similar fashion as mentioned earlier. Finally the expression for 

the velocity profile can be given by   
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Here, the results are reported correct up to first order where the contributions from the higher 

order terms are omitted for simplification. The expressions of 0,0,0
T  and 

1,0d dxφ  presented in 

Section F for the completeness of the problem. 

F: The expressions of 0,0,0
T  and 

1,0d dxφ  
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Here, 

1,02b  represents the volumetric flow rate for patterned electroosmotic flow of a Newtonian 

fluid given by  
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G: Results in the thin EDL limit 

 

When the thickness of the EDL becomes very small (of the order of the few nanometers), the 

region of excess charge distribution is very less as compared to the channel dimension. In 

presence of axially modulated surface potential, the favorable pressure gradient for 2ω π=  

occurs at the middle of the channel while adverse pressure appears to be present at the channel 

ends the effect of which is clearly reflected in the velocity distribution of Fig. 2a.  Similarly, the 

distribution of the dispersion coefficient shows bimodal behaviour with maximum augmentation 

occurring in the middle and minimum at the two ends. Also, the degree of fluctuation gets 

amplified on imposition of non-isothermal condition ( )ξ  as well as fluid viscoelasticity ( )De . 

(as shown in Fig. 2b). 

 

Figure. 2a. Velocity profile in the y-direction, evaluated at 
1 2

21, 0.5,α ω πα == = . 

(i), (iii) viscoelastic fluid ( )0.5De =  and (ii), (iv) Newtonian fluid ( )0De = .  

(i) (ii) 

(iii) (iv) 
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