Supplementary material for '' Patterned Surface Charges coupled with
Thermal Gradients may Create Giant Augmentations of Solute Dispersion in

Electro-Osmosis of Viscoelastic Fluids"

A: Analytical Solution Procedure

Using the non-dimensionalisation scheme discussed earlier, the continuity, momentum,
energy and charge distribution equations are rewritten in the following way:
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In equations (A2)-(A3), x is the ratio of the length scales in the longitudinal and transverse
directions (y=~h/l) and Pe, is the thermal Peclet number (PeT =pC, uy h/kwf) Here,

A= g“ i (,/)mf is the ratio of the induced potential and the applied potential and §, =1/ T, ,
o,/ o a,/e,, B,=a,/a, are the parameters showing the temperature dependence

0f the phys1cal propertles while &, = &, h is the inverse of the dimensionless EDL thickness with

K, \/ 2n,z Srefk T) Besides, the thermal perturbation to the system can be characterized

by the parameter ¢ =, AT . Also, we define a new variable v = (hT h/ kref) to take into account

the convective heat loss to the surrounding. Interestingly, this variable is nothing but the well-
known dimensionless number Biot number (Bi) which is the ratio of the conductive heat transfer
from the solid surface to the convective heat transfer in the surrounding. Now, considering the
case of low surface potential, the simplified charge distribution along with the current continuity
equations are presented below
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After using the relevant scales, the dimensionless forms of the stress components for a
viscoelastic fluid take the following form:

_0 —\-1.-0 —
- SDe. o Dy ug{exp(—f T)Txx}+v%{exp(—.f T)TH}
ZZE:{H— exp(—cf T)(TH+TW)}TH+ — - 5 .
o —2exp(—§T)§r —}exp(—fT)gu
d _d =\
i—{exp( £ T)Z v —{exn(£T)7, )
2}{@:{”51)@ exp(—cf T)(@x+?“,)}zf‘},+De'("Z o - % - (AS)
—2,1’exp(—{.';' T)g?"y —2exp(—{.';' T)%T'W
- ! ) Doy ﬁ%{exp(—ff)f@,}+i%{exp(—ff)fxy}
===+ exp(—<T)(7,+7, ) 1T, +—
T poul-¢7 Tz, 2T,
& 7 &

where the Deborah number ( De, =4, Kyu HS) represents the extent of viscoelasticity of the

fluid wherein De, = 0 corresponds to Newtonian fluid. Now, the boundary conditions described

by equation (8) of the manuscript are rewritten in their respective non-dimensional forms

(A6)
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where w= @, [ is the patterning frequency of modulation in dimensionless form. To obtain the

flow and temperature fields from the set of above dimensionless forms, we have performed an
asymptotic approach followed by the classical lubrication approximation theory. [1-4]

In typical microfluidic applications, the length scale in the transverse coordinate is very
small as compared to the longitudinal coordinates (/> h). In the limit of y — 0, the terms

involving O(y) and O( ;(2) can be discarded and the simplified momentum and the stress

components become
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From equation (A8), it is clear that 7 =0 and a relationship between the stress components 7,

XX

and 7 can be established. Meanwhile in the energy equation, the conduction terms cannot be

neglected even in the limit of } — 0 because of their relative strengths with respect to the other

terms. This can be done simply by doing an order of magnitude analysis of these two terms
where one can compare their relative strengths with respective to heat generation term due to
Joule heating. The characteristic temperature in the axial and transverse directions are scaled as

AT ~o,, Ergf2 & / K. and AT, ~ GrefEref n? / K, respectively and hence,
AT, /AT, ~’/h* ~ x> 1. Since the scales of the diffusive terms are expressed as y AT, and
AT, / X respectively, they are comparable to each other (i.e. yAT ~ AT, / X ) and also in the

same order with the heat generation term and therefore, these terms cannot be neglected in the
energy equation even in the limit of ¥ — 0. [3] Similarly, to determine the relative contributions

of the convective components, we use the scales of AT and ATy and their ratio becomes
AT, /AT, ~ I’/h*>1,ie.,0T /0y < 9T /0X. Additionally, one can assume that the surface
potential is very small as compared to the applied potential, i.e., {, o / Py = =A< and the terms
involving O(A) and its higher orders can be neglected thereby resulting the following simplified

forms:
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Now we compare the relative contributions of the terms of the charge distribution described by
equation (3) of the manuscript. Choosing appropriate scales of the respective parameters, i.e.
E~Eyr 9~y W~Cy, x~1, and y~ A, , the first term on the left hand side of equation

(3b) becomes ~ ¢, (¢r
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written below

<<1; which is negligible compared to the second term and the simplified form is now
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By choosing the typical values of the pertinent parameters (these values are shown in the Results
¥4
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and Discussion section), one can show that < 1 and the momentum components are then

reduced to the following form
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Since the axial variation of the temperature in the x co-ordinate is more significant compared to

the y co-ordinate, one can expand the temperature distribution in an asymptotic series in the

following manner
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where v characterizes the rate of heat loss to the surrounding. Now, we utilize this expansion

along with the two thermal boundary conditions and integrate the energy equation over the entire
domain
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As discussed earlier in the manuscript, v turns out to be a small quantity as compared to unity.
Physically, lower value of v corresponds to lesser convective heat loss to the surrounding which
in turn influences slightly the velocity and temperature distribution within the flow domain. To
incorporate this small change, we have chosen Vv as perturbation parameter along with ¢&.

Subsequently, the energy equation described by equation (A14) becomes the leading order (zero
order) solution with respect to v and hence, mathematically, v should be absent in this
expression. However, since this equation is obtained by integrating equation (A10) in the
transverse direction, vV comes naturally in equation (Al4) through the convective thermal
boundary condition. Now, the potential distribution for the patterned electrothermal flow is given
by
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Using typical values of the involving parameters, one can show that (S, —/f,)¢ <1 and

B, B, & < 1. Hence, the potential distribution is simplified and takes the following form
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Using the expansion of equation (A13), the set of governing equations are rewritten below
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The simplified stress components (after substituting 7, =0) are also expanded in a similar way
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In order to solve the equations (A17)-(A18), we have used an asymptotic approach which is
described in detail in Section B of the supplementary material.

Limiting Cases

On the basis of the present asymptotic analysis, we investigate some limiting cases.
Case 1: If we substitute £ =0, the velocity profile reduces to the following form:
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which represents the flow field for a patterned electroosmotic flow of a viscoelastic fluid in
absence of any thermal perturbation with the coefficients given in Section C of the
supplementary material. Further simplification is possible by substituting &, =0, ¢, =1
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which is the velocity profile for purely electroosmotic flow of viscoelastic fluid through parallel
plate microchannel. [5]

Case 2: If we substitute De” = 0, the velocity profile reduces to the following form:
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which is the velocity distribution for patterned electro-thermal flow of a Newtonian fluid. This is
further reduced to, on substitution of &, =0, ¢, =1
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The expressions for 7_}),0,0 and dﬁlyo /df can be found in Section F of the Supplementary
Material.

Al: Assumptions behind the Poisson-Boltzmann distribution

While obtaining the charge distribution, we have assumed that the Poisson-Boltzmann
description remains valid. This assumption is based on the fact that ions are point charges and
they are in local equilibrium. Under this condition, one can neglect the contribution of the
advection term in the Poisson-Nernst-Plank equation when the value of ionic Peclet number Pe,

ref h/D
is the characteristic velocity scale defined by u,. ~¢,,.{7, / U h. In typical

is very small as compared to unity (Pe, < 1). From definition, Pe, is written as Pe, =u

where u,,,

microfluidic  applications, &, ~107° CV'm™, £ ~10°V, g ~10"Pas, and
D ~10" m’s™'[6] which yields Pe, ~ 0(10_6)<< 1. In this context, it is also necessary to

mention that the Poisson-Boltzmann description of the charge distribution breaks down in
presence of finite sized ionic species in which one needs to take into account a more realistic
model, commonly termed as modified Poisson-Boltzmann equation. [7-9] Accordingly, the
present analysis is valid only when the effect of ionic mobility and finite size (also known as
steric factor) are neglected.



B: Asymptotic Solution of Equations (A17)-(A18)

To obtain the asymptotic solution, we have used the well known regular perturbation
technique where & is chosen as the gauge function to show the effect of thermal perturbation in

the flow and temperature distribution. As already discussed, & depends strongly on the induced
temperature difference (A7) and the temperature sensitivity parameter (¢ ). To get a physical

relevance, we have first extracted the data points of the viscosity reduction as a function of
temperature, as reported by Huang and Yang. [10] Then, regression analysis of this data points

is performed where these are fitted in the form of ,u/ Uy =0, -exp{—cx6 (T—T )} (this form of

ref
viscosity variation is used in the mathematical formulation) and the values of the fitting
parameters are obtained as &, =0.9768 and ¢, =0.0175 K™ respectively. As already discussed,
the maximum AT is ~ 20 K up to which linear dependence with temperature is observed. Thus,
choosing o, =0.0175 K' and AT <20 K implies that the maximum possible value of the

perturbation parameter can be chosen up to 0.35 while for small AT, this is obviously a very
small quantity.
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Figure 1. Normalised variation of viscosity (of a liquid having similar dependence of
physical properties like water) with temperature.[10] Symbols represent the data points
reported by Huang and Yang while solid line shows the fitted curve according to our
functional relationship.

In the limit of £ — 0, any variable ¥ can be expanded in the following way
V=0t En S e (B
For leading order, i.e. O(cfo) , the set of equations are given below
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The boundary conditions described by equation (A6) are rewritten in the following manner

Now, the stress component used in equation (B3) is substituted by the following expression
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where symmetry condition is taken into account at the channel centreline, i.e. 7, (y=0)=0.

Hence, the simplified momentum equation in the leading order takes the form
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To solve this non-linear equation, one needs to use the same asymptotic approach and the
variables are expanded in a similar fashion using De" as the perturbation parameter defined as
De’ = De”. Hence, all O (1) terms represent the Newtonian contribution while O (De*) and

higher order terms are showing the viscoelastic counterpart. Now, the variables are expanded in
the following way
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Here, all terms with subscript 0,0 represents the leading order solution, i.e. the Newtonian

contribution part while subscripts like 0,1 and 0,2 correspond to their viscoelastic counterpart
Now we expand the variables of equation (B8) and the equations are given below
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Now the solution of equation (B9) subjected to the no-slip boundary condition is given by
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where the pressure gradient dp,, / dx 1is yet to be determined. This can be done by invoking the
continuity equation to determine the v-component of the flow field which is then subjected to the
impermeability condition at the surfaces v,(y =£1)=0 and yields
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Similarly proceeding, the solution of equation (B10) is given by
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The coefficients of equations (B12)-(B15) are given in Section C. Once the velocity distribution
is known, one can evaluate the corresponding temperature and potential distribution
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The coefficients of equation (B16) can be found in Section D.
Knowing the leading order temperature and potential distribution, one can calculate the
higher order potential distribution, as evident from equation (B4)
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Once @, and ¢ are known, the electrothermal body force (IFX ) in the momentum equation can be

evaluated as
1
21(
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The solution for the set of equations of O(fl) described by equations (B4)-(B5) are presented in
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Section E. Once the solution is obtained, volumetric flow rate Q through the microchannel can
be calculated as
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linearity of the governing equations.

C: The coefficients of Equations (B12)-(B15)
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D: The coefficients of Equation (B16)
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where 2b, represents the leading order volumetric flow rate through the microchannel i.e., in

and b :% [ (@ + DeTy,) dy

absence of any thermal perturbation.

E: The solution of Equations (B4)-(BS5)

First, we have obtained the stress component of the first order which in turn is used to
determine the flow field
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To solve this equation (E2), we have again used the same approach and the variables are
expanded as follows

_7_;),0 K, {a1 +a, COS(wx)}

i, =it +Deu, +De it ,+
V=Vt DeV, +De” v, e
P=Do+Dep ,+De’p,+

T T000+D67;)01+De Tooz
¢1:¢1,0+D€$¢1,1+D€ ¢1,2

Thus, equation (E2) is splitted into two following set of equations

di,, dp, _ _ _ Slnh( oY ) 510
0= Ty + + ’
P P YTdyo0 Ko{al a, Cos(wx)} Osh(l?o) dx &)
- _\y sinh (K, y)
=Ty 00 Kyl + @, cos(@X)}———=
0,0,0 0{ 1 2 } COSh( 0)
ab—tl,l — dl_? y rZ_-v ydl_?(),l +f ydﬁ(),()
dy  dx " dx
_ _ .y sinh(x, y da _ _\ysinh(K,y
+%,{a +a, cos(wx)} cole "’?0)) d; ~T, .5 {0+, cos(wx)} COS}E(’? ))
| B~ Py - |
OV +T +
dﬁooy_ ’ dx Y oo dx aw
+8 o K {o+a, cos(a)x)}smh( % 3) d
I?g _\sinh (%, y) cosh(k,) dx
K, {o, +a, cos(w¥)} =
cosh(®,) | | _ sinh (%, ¥)
—T00 K, {0{1 +a, cos(a))_c)}—o_
T cosh (%) | (E4)

The solution of equation (E3) is given by



dpo,g
dx

T('),O,O

(7 -1)+

(7 -1)+H{a +, cos(a)f)}{
cosh (&, y)}

cosh(X,)

where dp, / dx 1is obtained in a similar fashion as mentioned earlier. Finally the expression for

cosh (X, y) _1} dé,,
(E5)
+T,,, {t + @, cos (a)f)}{l

the velocity profile can be given by

i =1ty + De'iy, + De”, , + & (i + Deiry, ) + ... -
=ity + De'ry, +Eit, +O(E)+0(De™ ) +O(EDe" ) +

Here, the results are reported correct up to first order where the contributions from the higher
order terms are omitted for simplification. The expressions of 7;,, and d(,/?m / dx presented in

Section F for the completeness of the problem.

F: The expressions of T, ,, and 44, /dx

P SN G ) ) ] Z
TO,O,O_ v (eXp(dz,o)—eXp(dl,o)) (eXp(dz,o x) CXP(dl,o x))"‘ v (1 CXp(d1,0 )C)) (F1)
_ X
dé,, ~ ;{exp(dw)_l} l—exp(dlo) exp(dw)—l -\ _
= P exp(dz,o)—exp(dm) dz,o + dm +exp(d2,0x) exp(dwx) -
exp 1 _
oB { (dw) P (d”’x)}
[mee + /B, Pe +4v} [blOPe — b2, e +4v} -
where 4, , = » dyy = and b, =_I Uyo dy
2y 2y T2

Here, 2b, , represents the volumetric flow rate for patterned electroosmotic flow of a Newtonian

2b,, = 2{1——tanh_( '?O)Hal ta, Sin(w)} (F3)

K, @

fluid given by




G: Results in the thin EDL limit
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Figure. 2a. Velocity profile in the y-direction, evaluated at o, =1, &, =0.5, @ =27 .
(i), (iii) viscoelastic fluid (De =0.5) and (i), (iv) Newtonian fluid (De =0).

When the thickness of the EDL becomes very small (of the order of the few nanometers), the
region of excess charge distribution is very less as compared to the channel dimension. In
presence of axially modulated surface potential, the favorable pressure gradient for w=27x
occurs at the middle of the channel while adverse pressure appears to be present at the channel
ends the effect of which is clearly reflected in the velocity distribution of Fig. 2a. Similarly, the
distribution of the dispersion coefficient shows bimodal behaviour with maximum augmentation
occurring in the middle and minimum at the two ends. Also, the degree of fluctuation gets
amplified on imposition of non-isothermal condition (&) as well as fluid viscoelasticity (De) .

(as shown in Fig. 2b).
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Figure. 2b. The effect of @ on the axial variation of Eeﬁ, , evaluated for different values

of &. (i), (iii) viscoelastic fluid (De =0.5) and (ii), (iv) Newtonian fluid (De=0).
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