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Supplementary methods 

 
Model selection for elbow angle prediction. We combined our geometric morphometric 

analyses with machine learning techniques [1] to infer elbow and manus angles used by freely 

gliding gulls. We used principal components scores from the cadaver manipulations as “training” 

data, because each frame of the cadaver videos had both peripheral landmarks and known elbow 

and manus angle. We fit a variety of models (linear, general additive LOESS, random forests) 

and also varied the number of principal components (from two to ten) as inputs to the model to 

determine the relationship between wing shape and elbow or manus angle. During model 

training, we used a 10-fold cross-validation to inform the selection of parameters within a given 

model; parameters were adjusted to minimize cross-validation error. We then used two “test” 

data sets: (I) the set of all wind tunnel wings, and (II) wind tunnel wings with intermediate/high 

(>80°) elbow angles.  

We found that a random forests model using scores from the first four principal components 

performed the best (model ID: t) (figure S2a and table S1). This model minimized the combined 

root mean square error of known elbow angles of the cadaver specimens (training data; RMS 

error: 1.82°), all wind tunnel wings (test set I; RMS error: 9.42°) and as well as the error of 

intermediate/high (elbow angle > 80°) wind tunnel wings (test set II; RMS error: 11.65°) (figure 

S2a).  

Model sensitivity analysis. We performed a sensitivity analysis on our model selection which 

revealed that the predicted elbow range for all models is relatively constant. (figure S2b). Other 

than two models (f and k, whose RMS error was very high) all of the models predicted elbow 

angles that spanned the range where we measured the aerodynamic trade-off in efficiency and 
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stability. Therefore, our inference of elbow angles from wing shapes is not dependent on model 

selection.  

We also investigated whether model selection would affect the result that elbow angle reduced as 

wind speed and wind gust increases. We found that all models (except for f and k) predict a 

similar relationship between elbow angle and wind speed/wind gust and have overlapping 

confidence intervals (model ID: t - wind speed: -0.61°/(m/s), t180 = -3.415, p = 0.000789; wind 

gust: -0.40°/(m/s), t180 = -3.253; p = 0.00136, figure S2c). It was not feasible to mark individual 

birds during our observational study and it is possible that individual observations are from the 

same bird. We also investigated the quantile regressions (evaluated at 10% intervals) of elbow 

angle with wind speed and wind gust respectively for our selected model (model ID: t, figure 

S8). For each case the 95% confidence intervals for the slope overlapped and as such were not 

significantly different. 

Model prediction error. We investigated the prediction error of the random forests using the 

wings tested in the wind tunnel as a test set (since the elbow angle is known). We found the 

prediction error to be below 23° for the elbow and below 12° for the manus (figure S3a, b).  This 

error was determined three times per wing, each time changing the plane that was parallel to the 

camera lens. Specifically, the: a) “full plane” made by wing tip and root chord, b) “hand plane” 

made of the wing tip and a chord approximately through the hand wing and, c) “interior plane” 

made by the root chord and the elbow joint. As these effects also tested the sensitivity of the 

camera and best orientation was the hand plane with a maximum error of 20°. 

We explored how sensitive the prediction error was to the rotation of the wing relative to the 

camera using prepared wings with known elbow angles (figure S3c, d, e, f). The wing was 

rotated towards or away from the camera (positive or negative on the body axis) through a range 
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of approximately 100°. We found that as the wing tip was rotated about the body axis towards 

the camera, the error increased significantly but as the wing tip rotated in the opposite direction 

the error reduced. We would expect that this error would begin to increase as the wing is rotated 

away from the camera causing the ventral surface to be obscured from the camera. The error was 

less sensitive to rotations about the spanwise axis but did increase at higher rotations.  

Wind tunnel specimen geometry. To calculate the wing area we determined the 3D position of 

9 peripheral points (Allied Vision Technologies Prosillica GE680, 4-8 mm lens, 640 x 480 pixel 

resolution) and used a custom-code to rotate these points until the hand wing was flat and 

parallel with the horizontal and the root chord was also parallel with the horizontal (figure S4b). 

From here we used the 2D projection of these points and the bootlace method to calculate the 

planform area. The root chord was determined as the straight distance between points placed on 

the shoulder and the final secondaries (figure S4a). Effective wing span was determined from the 

2D projection of points on the humerus and the first primary (P10) (figure S4c). Span-wise 

camber was determined from 3D imaging of 7-8 points on the leading edge of the wing. These 

points were rotated using rotation matrices until the vector defining the hand wing was flat and 

parallel to the horizontal and, because we could not track the root chord for this set up, until a 

point on the distal carpometacarpus was parallel with the hand wing. Results were compared to 

the true wings to visually assess proper rotation results (figure S4a). Next, to determine a 

comparable metric for the spanwise camber of the wings the points were rotated to ensure the 

humerus and the distal P10 point were flat on the horizon. From this orientation the maximum 

spanwise camber was determined to be the maximum height of the leading edge over the wing 

span (figure S1). 
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Experimental uncertainty analysis. We calculated the uncertainty of the time series readings of 

the pressure, force and moment data using the integrated autocorrelation time calculated by the R 

package dirmcmc [2]. This result was propagated through all calculations. Additionally, this 

propagation included error of wing area (4%), root chord (3%) and bias errors from machinery. 

Error from measurements and equipment was also included within the uncertainty propagation as 

applicable. Uncertainty of the results are displayed as error bars in figure 3. The uncertainty is 

minimal for all results except for the maximum coefficient of lift. 

Estimating induced drag over wing root. The induced drag in our experiment is expected to be 

overestimated due to the gap between the root of the wings and the tunnel walls (figure S5). We 

estimated this effect by using the standard planar wing equation to compute the amount of 

induced drag that would occur if that the half model was truly a full model (using a span 

efficiency of 1)[3]. In this simplified case we find that the induced drag over the root is 

equivalent to the tip effect. We removed that value from the measured coefficient of drag and re-

computed the aerodynamic efficiency (figure S5a). We found that the relative difference 

between our estimation and measured value was 5-20% (figure S5b). Wings were tested at 

varying distances from the wall to allow us to ensure that the hand wing remained approximately 

perpendicular to the freestream flow (figure S5c). This method provides a conservative estimate 

because the presence of the wall in proximity to the root will have a damping effect compared to 

the wing in an infinite environment, which is assumed in our model. Induced drag over the wing 

root may be further reduced due to the geometry of the wings, as span-wise camber improves the 

span efficiency above 1 and reduces the effects of induced drag compared to their planar 

counterparts [4]. Finally, it is possible that the porous feather structure may allow air to pass 

through across the wing to interact with the boundary layer and impact the induced drag [5].  As 
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a result of these findings, we expect that our results will hold despite the potential over-

estimation of drag. Induced drag has a negligible effect on the pitching moment due to its 

generally small magnitude of the force and small moment arm. Thus an increase of the induced 

drag in itself should not substantially affect the pitching moment measured in our experiment. 

Aerodynamic results statistical analysis. The pitch stability derivative (figure 3f) was 

determined by fitting a linear model to the linear range of data pre-stall and computing the slope 

of the line. 95% confidence intervals were computed and displayed. 

We used linear mixed-effects models from R package nlme [6] that allowed us to account for 

repeated measures on the same wings over different turbulence intensities. To do this we first 

selected the models by comparing different linear, quadratic, and cubic fits using the Akaike 

information criterion and Akaike weights (table S2). We found the best fit was a linear exponent 

on elbow angle for the maximum coefficient of lift and coefficient of pitch at the aerodynamic 

center. We found that the quadratic fit best explained the minimum coefficient of drag and the 

cubic model best predicted the aerodynamic efficiency and pitch stability derivative. 

 We next used an ANOVA test to compare a reduced model (signifying the null hypothesis) to 

the full model to determine the association between our explanatory variables (elbow angle and 

turbulence intensity) for each response variable (aerodynamic characteristics) (table S3). All 

comparisons (except for the effect of turbulence intensity on the minimum drag) allowed us to 

reject the null hypothesis and find that there is a significant probability that there is an 

association between our tested explanatory and response variables. The medians of these models 

were visualized for figure 3b, c, e and g  using a model-based parametric bootstrap method with 

100 simulations from the lme4 package [7].  
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Turbulence Grids/Calculations. To examine effects of turbulence intensity on gull wings, we 

varied turbulence intensity using turbulence generating grids. We had three conditions: a) low 

turbulence, no grid b) low/medium turbulence, grid ID: Rd38 c) medium turbulence, grid ID: 

Sq39. Rd38 is a bi-planar round rod grid consisting of round aluminum rods with a 6.8 mm 

nominal diameter mounted in a machined frame with a mesh length of 32 mm. Sq39 is a square 

mesh consisting of a single piece of 6.35 mm thick aluminum that was water cut with a mesh 

length of 100 mm. The two grids generate a uniform mean flow with homogeneous turbulence 

with integral length scales of approximately 16 mm for Rd38 and 43 mm for Sq39 as verified in 

previous studies [8]. 

For each turbulence grid, we used a single hot-wire probe operated with a constant temperature 

anemometer built by the University of Newcastle [9] to measure turbulence intensity at the 

stream-wise plane approximately at the leading edge of the mounted wings. The hot-wire was 

calibrated against 19 known velocities spanning 2 m/s and 20 m/s, to which Kings Law was 

fitted. The calibration points were sampled at 20kHz for 120 seconds. The turbulence intensity 

was calculated as the root mean square of the velocity fluctuations over the average velocity. The 

one-sided power spectral density of the velocity time series was determined from the fast Fourier 

transform of the signal. These results were normalized to the streamwise velocity and the mean 

root chord of the models tested, which is approximately 0.21 m (figure S7a). The total mean-

square fluctuation of the time series is given by the integral of the spectral density (figure S7b). 

The calculated values agreed with results from previous studies [8]. We found that the energy 

peaks (figure S7b) were close to the convective time scale of the wings.  
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Figure S1. Spanwise camber increases with elbow angle across the in vivo range.  Maximum 
spanwise camber is determined as the ratio of maximum height of the leading edge to the wing 
span.   
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Figure S2. Sensitivity analysis of the prediction model selection We investigated the 
sensitivity of our results to the selected model used to predict elbow angle. We compared 23 
models including linear, loess, random forests and an estimator based on the closest neighbor 
(Table S1). (a) Root-mean-square (RMS) error of the elbow angle prediction was computed for 
three groups: a) stills from cadaver manipulations b) photos of wind tunnel wings c) a subset of 
the wind tunnel wings above 80°. We then scored the models using the RMS error from the three 
plotted errors and this informed the ordering of the x axis from worst to best. We selected to use 
the model with the lowest RMS error (random forests model with four principal components). 
(b) Predictions of in vivo elbow angles from each model. The predicted range for all models 
(except for f and k) spans our range of aerodynamic trade-offs and choice of model does not 
affect our conclusions. (c) The predicted elbow angle also indicates that there is a trend with 
wind speed and wind gust. Again we found that despite the selected model we would arrive at 
approximately the same results (except for f and k).  
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Figure S3. Error of the selected prediction model and sensitivity analysis of camera 
position relative to the wing. A random forests model using the first four principal components 
was fit to results from the cadaver manipulation and error was assessed by using the model to 
predict wings with known elbow and manus angles. (a) Elbow angle prediction was assessed 
using three different camera perspectives and we found 23° maximum absolute error and 6.9° 
average error. (b) Manus angle prediction had 12°  maximum absolute error and 3.8° average 
error. Sensitivity to the perpendicularity was investigated and, when predicting elbow angles, (c) 
found that error grew as the wing rotated about the body axis and was relatively constant as the 
wing rotated away from the camera about the same axis. (d) The model was less sensitive to 
rotations about the span-axis. (e, f) Similar yet diminished trends in sensitivity to 
perpendicularity were observed for manus angle predictions with maximum absolute error 
always remaining under 20°. The model had errors over 40° only for photos that were clearly not 
a ventral view. The sensitivity analysis was completed with wings of known elbow angles of 
149° (black dots) and 108° (purple dots).  
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Figure S4. The geometric properties of the wind tunnel wing specimens. (a) Chord measured 
at the root, (b) 2D projected area of the wings, (c) effective wing span, (d) aspect ratio based on 
effective area and effective span (𝐴𝑅 = 𝑒𝑓𝑓	𝑤𝑖𝑛𝑔	𝑠𝑝𝑎𝑛. (2 ∙ 𝑒𝑓𝑓	𝑤𝑖𝑛𝑔	𝑎𝑟𝑒𝑎)). 
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Figure S5. Effects of induced drag over the wing root. Size constraints of the wind tunnel 
allowed only a single wing to be tested at a time. This set-up potentially allowed for additional 
induced drag to be incurred due to airflow around the root of the wing. (a) This effect is 
estimated using the standard fixed wing induced drag calculation with a span efficiency of 1. (b) 
This analysis revealed that 5-20% relative error in the aerodynamic efficiency was possible. (c) 
The wings were tested at varying distances from the wall to allow correct positioning of the 
leading edge. The wall would have a dampening effect on the induced drag and lessen the error. 
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Figure S6. Wind tunnel results for all wings tested over the three turbulence intensities.   
(a) Lift-to-drag polars (b) Pitching moment coefficient variation with coefficient of lift.
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Fig. S7. Turbulence intensity was measured through hot-wire. (a) Turbulence intensity was 
calculated from the power spectral density as the root-mean-square of velocity by the mean 
streamwise velocity. Freestream turbulence intensity with no grid was 0.04%, the medium grid 
had 1.42% turbulence intensity and the coarse grid high turbulence intensity 4.61%. (b) The 
compensated semi-log plot is a visually proportional representation of the true distribution of the 
turbulent kinetic energy over the relevant time scales. 
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Fig. S8. Quantile regression of the wind data vs. observed elbow angle. The regression 
coefficients of the quantiles evaluated at 10% intervals do not differ significantly. 
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Table S1. Sensitivity analysis of the model selection.  
 
ID Model equation RMS error (°) Slope (°/m/s) 

cadaver Test I Test II score Wind Gust 
a lm(elbow.angle ~ PC1 + PC2) 17.72 6.99 7.86 20.60 -0.46 -0.32 
b lm(elbow.angle ~ PC1 * PC2) 17.15 9.42 11.13 22.51 -0.72 -0.50 
c lm(elbow.angle ~ PC1 + PC2 + PC3 +PC4) 16.63 7.52 8.42 20.10 -0.39 -0.26 
d lm(elbow.angle ~ PC1 * PC2 * PC3 *PC4) 13.35 9.78 10.34 19.51 -0.80 -0.57 
e lm(elbow.angle ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6 

+ PC7 + PC8 + PC9 + PC10) 
16.45 8.28 8.26 20.18 -0.61 -0.42 

f lm(elbow.angle ~ PC1 * PC2 * PC3 * PC4 * PC5 * PC6 
* PC7 * PC8 * PC9 *PC10) 

7.86 749.39 849.55 1132.86 -5964.79 -4047.11 

g loess(elbow.angle ~ PC1 + PC2) 14.82 9.35 10.70 20.53 -0.16 -0.11 
h loess(elbow.angle ~ PC1 + PC2 + PC3 +PC4) 10.75 11.12 12.18 19.69 -0.30 -0.19 
i lm(elbow.angle ~ PC1^2 + PC2^2) 16.31 10.53 7.40 20.78 -0.27 -0.18 
j lm(elbow.angle ~ PC1^3 + PC2^3) 15.73 7.28 7.53 18.90 -0.21 -0.14 
k lm(elbow.angle ~ cos(PC1) + cos(PC2)) 33.88 33.85 31.65 57.41 0.13 0.09 
l lm(elbow.angle ~ sin(PC1) + sin(PC2)) 17.71 6.99 7.87 20.60 -0.46 -0.32 

m Closest Neighbor - 2PCs 0.00 19.79 21.93 29.54 -0.70 -0.45 
n Closest Neighbor - 2PCs (Mean of 3) 16.22 16.78 18.90 30.03 -0.62 -0.42 
o Closest Neighbor - 6PCs 0.00 14.66 18.12 23.31 -1.00 -0.65 
p Closest Neighbor - 6PCs (Mean  of 3) 3.34 15.29 18.61 24.32 -1.04 -0.68 
q Closest Neighbor - 10PCs 0.00 14.66 18.12 23.31 -1.00 -0.65 
r Closest Neighbor - 10PCs (Mean of 3) 3.34 15.29 18.61 24.32 -1.04 -0.68 
s rf(elbow.angle ~ PC1 + PC2) 1.61 10.75 13.55 17.38 -0.69 -0.47 
t rf(elbow.angle ~ PC1 + PC2 + PC3 +PC4) 1.82 9.42 11.65 15.09 -0.65 -0.42 
u rf(elbow.angle ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6 

+ PC7 + PC8 + PC9 + PC10) 
6.31 15.60 16.72 23.72 -0.61 -0.40 

 
We tested 23 models and predicted elbow angles from fully characterized wings. We used the 
root-mean-square error from the prediction groups to define an overall score for each model.  
The four PC random forest model (gray shading) best minimized the error between the three 
categories. Additionally, we computed the regression coefficient for how elbow angle changed 
with wind and gust speed and found minimal differences between models (figure S2). 
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Table S2. Model selection for aerodynamic parameters  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the Akaike information criterion (AIC) and Akaike weights we investigated the best linear 
polynomial fit. Columns represent the different exponents on elbow angle for each model tested. 

  

  ~ ElbowAngle^_ + TI + (1|WingID) 
  1 2 3 

CLmax 

AIC -74.96 -73.05 -71.05 

AIC differences 0.00 1.91 3.91 
Relative likelihood of 

model 1.00 0.38 0.14 

Akaike weights 0.66 0.25 0.09 

(L/D)max 

AIC 47.71 42.67 41.92 

AIC differences 5.79 0.76 0.00 
Relative likelihood of 

model 0.06 0.69 1.00 

Akaike weights 0.03 0.39 0.57 

CDmin 

AIC -157.44 -162.99 -161.76 

AIC differences 5.55 0.00 1.23 
Relative likelihood of 

model 0.06 1.00 0.54 

Akaike weights 0.04 0.62 0.34 

dCm/dCL 

AIC -124.90 -124.05 -125.90 

AIC differences 0.99 1.84 0.00 
Relative likelihood of 

model 0.61 0.40 1.00 

Akaike weights 0.30 0.20 0.50 

Cmac 

AIC -171.71 -169.73 -170.03 

AIC differences 0.00 1.98 1.68 
Relative likelihood of 

model 1.00 0.37 0.43 

Akaike weights 0.55 0.21 0.24 
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Table S3. ANOVA comparison between full and reduced model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using the model selected by AIC (table S2) we used ANOVA to compare the linear mixed-effect 
models to a reduced model (gray font) to determine the statistical significance of the explanatory 
variable (either elbow angle or turbulence intensity). A p-value of less than 0.05 indicates that 
the explanatory variable has a significant effect on the response variable. 
 
 
 
 
  

Model 𝝌2 Df Pr(>𝝌2) 
Elbow angle 

Aerodynamic Efficiency ~ 1 + TI + (1 | WingID) 13.48 3 0.0037 ** 
Aerodynamic Efficiency ~ ElbowAngle^3 + TI + (1 | WingID) 

Maximum lift coefficient  ~ 1 + TI + (1 | WingID) 5.003 1 0.0253 * 
Maximum lift coefficient ~ ElbowAngle + TI + (1 | WingID) 

Minimum drag coefficient ~ 1 + TI + (1 | WingID) 10.29 2 0.0058 ** 
Minimum drag coefficient ~ ElbowAngle^2 + TI + (1 | WingID) 

Pitch stability derivative ~ 1 + TI + (1 | WingID) 18.48 3 0.0003 *** 
Pitch stability derivative ~ ElbowAngle^3 + TI + (1 | WingID) 

Zero-lift pitch ~ 1 + TI + (1 | WingID) 4.39 1 0.0362 * 
Zero-lift pitch ~ ElbowAngle + TI + (1 | WingID) 

Turbulence intensity 
Aerodynamic Efficiency ~ ElbowAngle^3 + 1 + (1 | WingID) 5.942 1 0.0147 * 

Aerodynamic Efficiency ~ ElbowAngle^3 + TI + (1 | WingID) 
Maximum lift coefficient ~ ElbowAngle + 1 + (1 | WingID) 12.9 1 0.0003 *** 

Maximum lift coefficient ~ ElbowAngle + TI + (1 | WingID) 
Minimum drag coefficient ~ ElbowAngle^2 + 1 + (1 | WingID) 0.172 1 0.6781  

Minimum drag coefficient ~ ElbowAngle^2 + TI + (1 | WingID) 
Pitch stability derivative ~ ElbowAngle^3 + 1 + (1 | WingID) 34.03 1 <0.0001 *** 

Pitch stability derivative ~ ElbowAngle^3 + TI + (1 | WingID) 
Zero-lift pitch ~ ElbowAngle + 1 + (1 | WingID) 18.68 1 <0.0001 *** 

Zero-lift pitch ~ ElbowAngle + TI + (1 | WingID) 
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