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A Derivations of statistical estimators

A.1 Conformation probability

The probability that, under Boltzmann equilibrium conditions, a DNA complex will when sampled adopt
a sequence-level conformation corresponding to the ith domain-level conformation is estimated empirically
by sampling sequence-level conformations from the Boltzmann equilibrium distribution and tabulating
the number of such conformations corresponding to the domain-level conformation in question. This
estimate is computed using two pieces of information: the total number of samples, N , and the number
of samples corresponding to the domain-level conformation, Ni.

The Bayesian estimate for the conformation is appropriate because the maximum likelihood approach
produces misleading results when Ni = 0 or N , which can occur when N is small compared to 1

pi
or

1
1−pi

, respectively.

We use a uniform prior distribution on pi, so P(pi) = 1 for all pi. Thus, we have,

p̂i = E[pi|N,Ni] =

∫ 1

0

pi P(pi|N,Ni)dpi

where E[pi|N,Ni] is the expectation of pi given the observed values of N and Ni and P(pi|N,Ni) is the
probability mass function of pi given the same.

We can compute P(pi|N,Ni) exactly using Bayes’s law and combinatorial techniques. Bayes’s law
states that

P(pi|N,Ni) =
P(N,Ni|pi) P(pi)

P(N,Ni)

where P(pi) = 1 and P(N,Ni) =
∫ 1

0
P(N,Ni|pi)dpi. We know that

P(N,Ni|pi) =
(
N

Ni

)
pNi
i (1− pi)

N−Ni

and so

P(N,Ni) =

(
N

Ni

)∫ 1

0

pNi
i (1− pi)

N−Nidpi =

(
N

Ni

)
B(Ni + 1, N −Ni + 1)

where B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt is the beta function. Thus, we have

P(pi|N,Ni) =
pNi
i (1− pi)

N−Ni

B(Ni + 1, N −Ni + 1)
.
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p̂i=

∫ 1

0

pi P(pi|N,Ni)dpi

=
1

B(Ni + 1, N −Ni + 1)

∫ 1

0

pNi+1
i (1− pi)

N−Nidpi

=
B(Ni + 2, N −Ni + 1)

B(Ni + 1, N −Ni + 1)

=

(
(Ni + 1)!(N −Ni)!

(N + 2)!

)(
(N + 1)!

Ni!(N −Ni)!

)
=
Ni + 1

N + 2

where we use the fact that B(α, β) = (α−1)!(β−1)!
(α+β−1)! when α and β are positive integers. So we have the

estimator for conformation probability pi:

p̂i =
Ni + 1

N + 2
.

A.2 Conformation probability error

As a measure of the confidence in the estimate for pi, we compute the standard deviation of pi given the
observed data N and Ni. We first compute the a posteriori variance of pi to be:

Var(pi|N,Ni)=E[p2i |N,Ni]− E[pi|N,Ni]
2

=

∫ 1

0

p2i P(pi|N,Ni)dpi − p̂2i

=
1

B(Ni + 1, N −Ni + 1)

∫ 1

0

(pNi+2
i (1− pi)

N−Nidpi −
(
Ni + 1

N + 2

)2

=
B(Ni + 3, N −Ni + 1)

B(Ni + 1, N −Ni + 1)
−
(
Ni + 1

N + 2

)2

=

(
(Ni + 2)!(N −Ni)!

(N + 3)!

)(
(N + 1)!

Ni!(N −Ni)!

)
−
(
Ni + 1

N + 2

)2

=
(Ni + 1)(Ni + 2)

(N + 2)(N + 3)
−
(
Ni + 1

N + 2

)2

=
(Ni + 1)(N −Ni + 1)

(N + 2)2(N + 3)

where we again use the fact that B(α, β) = (α−1)!(β−1)!
(α+β−1)! when α and β are positive integers.

The standard deviation is the square root of the variance, which is given by

σ̂pi
=

√
(Ni + 1)(N −Ni + 1)

(N + 2)2(N + 3)
=

√
p̂i(1− p̂i)

N + 3
.

A.3 k1 estimate for bimolecular reactions

For the first-step model reaction

A+B
ki
1−→ ABi

ki
2−→ Pi

we estimate ki1 using Bayesian inference on the observed simulated sequence-level reaction trajectories.
Specifically, assume we observe N Multistrand trajectories, each of which begins with two conformations
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of A and B sampled from the Boltzmann distribution of secondary structures. Each trajectory is char-
acterized by an indicator variable Sn

i , which is 1 if and only if the final product multiset Pn equals Pi,
and its collision rate constant kncoll, which is computed as the net rate of forming any initial base pair
between A and B in the first step of the simulation. For simplicity in this and the following sections, in
the context of estimating ki1 and ki2, we refer to trajectories in which Sn

i = 1 as successful trajectories,
and all others as unsuccessful.

The rate constant ki1 represents the net rate with which A and B will collide in a CME trajectory
leading to Pi, so that

ki1 = E [Sn
i ] E[kcoll,i|Sn

i = 1] = pikcoll,i

where pi = E [Sn
i ] is the probability of simulating a successful FSM trajectory and kcoll,i is the average

value of kncoll over successful FSM trajectories.

The estimator k̂i1 is defined as

k̂i1 = E[ki1|P,kcoll] = E[pikcoll,i|P,kcoll]

where P = (P1,P2, . . . ,PN ) and kcoll are the vectors of product multisets Pn and collision rates kncoll,
respectively, for each of the N observed trajectories. Note that in contrast to E [Sn

i ], which is an expec-
tation taken over a particular distribution of trajectories, pi and kcoll,i are underlying parameters of the
system and do not vary between trajectories. E [pikcoll,i] refers to an expectation taken over the space
of possible (pi, kcoll,i), which is [0, 1]× [0,∞). This expectation is only well-defined with priors for each
random variable, described below.

To make the algebra that follows more tractable, we make the simplifying assumption that pi and
kcoll,i are independent random variables, so that

k̂i1 = E[pi|P,kcoll] E[kcoll,i|P,kcoll].

It remains to compute the conditional expectations E[pi|P,kcoll] and E[kcoll,i|P,kcoll].
Observe that pi is a random variable of the same form as a conformation probability (see Section

A.1). Thus, making a similar assumption of a uniform prior on pi over [0, 1], we can follow identical steps
to estimate the expectation as:

E[pi|P,kcoll] =
Ni + 1

N + 2

where Ni is the number of trajectories for which Sn
i = 1.

To compute the expectation on kcoll,i, we first assume that the individual kncoll values for each FSM
trajectory are sampled from an exponential distribution with mean kcoll,i. This is justified by the fact
that the exponential distribution maximizes informational entropy, so that choosing this distribution
assumes the least amount of prior knowledge about the kncoll. In addition, this assumption makes the
following math tractable.

By definition, we have,

E[kcoll,i|P,kcoll]=

∫ ∞

0

kcoll,i P(kcoll,i|P,kcoll)dkcoll,i

=

∫ ∞

0

kcoll,i P(P,kcoll|kcoll,i)
P(kcoll,i)

P(P,kcoll)
dkcoll,i

=

∫∞
0

kcoll,i P(P,kcoll|kcoll,i) P(kcoll,i)dkcoll,i∫∞
0

P(P,kcoll|kcoll,i) P(kcoll,i)dkcoll,i

where the second equality is due to Bayes’s law and P(kcoll,i) is the prior probability distribution on
kcoll,i.

To compute the value of P(P,kcoll|kcoll,i), first observe that all trajectories are independent, so that

P(P,kcoll|kcoll,i) =
∏

1≤n≤N

P(kncoll|kcoll,i).

Because kcoll,i gives no information about unsuccessful trajectories, any terms due to these trajectories
will be canceled out by the normalization term, and we may drop these terms. For successful trajectories,
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our assumption regarding the distribution of kncoll (above) gives us:

P(kncoll|kcoll,i) =
1

kcoll,i
exp

(
− kncoll
kcoll,i

)

so that

P(P,kcoll|kcoll,i)=
∏

Sn
i =1

1

kcoll,i
exp

(
− kncoll
kcoll,i

)

=

(
1

kcoll,i

)Ni

exp

−

∑
Sn
i =1

kncoll

kcoll,i


=

(
1

kcoll,i

)Ni

exp

(
− γi
kcoll,i

)
, where γi =

∑
Sn
i =1

kncoll.

Substituting into the equation for the expectation of kcoll,i yields

E[kcoll,i|P,kcoll] =

∫∞
0

(
1

kcoll,i

)Ni−1

exp
(
− γi

kcoll,i

)
P(kcoll,i)dkcoll,i∫∞

0

(
1

kcoll,i

)Ni

exp
(
− γi

kcoll,i

)
P(kcoll,i)dkcoll,i

To allow this expression to be evaluated analytically for all nonnegative Ni, we use the prior distri-
bution

P(kcoll,i) =

(
1

kcoll,i

)3

.

Although this is an improper prior over [0,∞), the form of the integrand allows both the numerator and
denominator of E[kcoll,i|P,kcoll] to converge. First, considering the numerator,

∫ ∞

0

(
1

kcoll,i

)Ni−1

exp

(
− γi
kcoll,i

)
P(kcoll,i)dkcoll,i=

∫ ∞

0

(
1

kcoll,i

)Ni+2

exp

(
− γi
kcoll,i

)
dkcoll,i

=

∫ ∞

0

uNi

γNi+1
i

e−udu, where u =
γi

kcoll,i

=
Ni!

γNi+1
i

where in the last equality we use the fact that m! =
∫∞
0

xme−xdx for nonnegative integral m.

Similarly, the denominator can be simplified to

∫ ∞

0

(
1

kcoll,i

)Ni+3

exp

(
− γi
kcoll,i

)
dkcoll,i =

(Ni + 1)!

γNi+2
i

and we have

E[ki1|P,kcoll] =

(
γi

Ni + 1

)(
Ni + 1

N + 2

)
=

γi
N + 2
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A.4 k1 error estimate for bimolecular reactions

As with conformation probabilities, the spread in k1 given the observed trajectories can be computed as
the standard deviation of the posterior distribution of k1. That is,

Var(ki1|P,kcoll)=E[(ki1)
2|P,kcoll]− E[ki1|P,kcoll]

2

=E[(kcoll,i)
2|P,kcoll] E[p

2
i |P,kcoll]−

(
γi

N + 2

)2

=

(∫∞
0

(kcoll,i)
2 P(P,kcoll|kcoll,i) P(kcoll,i)dkcoll,i∫∞

0
P(P,kcoll|kcoll,i) P(kcoll,i)dkcoll,i

)(
(Ni + 1)(Ni + 2)

(N + 2)(N + 3)

)
−
(

γi
N + 2

)2

=

 (Ni−1)!

γ
Ni
i

(Ni+1)!

γ
Ni+2

i

( (Ni + 1)(Ni + 2)

(N + 2)(N + 3)

)
−
(

γi
N + 2

)2

=
γ2
i

Ni(Ni + 1)

(Ni + 1)(Ni + 2)

(N + 2)(N + 3)
−
(

γi
N + 2

)2

=
γ2
i (2N −Ni + 1)

Ni(N + 2)2(N + 3)

using again the fact that
∫∞
0

xne−xdx = n! for integral nonnegative n.
The width of the posterior distribution is measured by the standard deviation, or square root of the

variance. So we estimate the error of the estimate for k1 to be:

σ̂ki
1
=

√
γ2
i (2N −Ni + 1)

Ni(N + 2)2(N + 3)
= k̂i1

√
2N −Ni + 1

Ni(N + 3)

.
Note that in the edge case with Ni = 0 and N > 0 we estimate an upper bound on k1 as:

ki1 ≤ max
n

kncoll

(
Ni + 1

N + 2

)
and report error bounds as infinite.

A.5 k2 error estimate for bimolecular reactions

Using Equation (6) of the main text, it is apparent that the unimolecular reaction rate ki2 is computed
as the weighted average of the reaction times, where weights are derived as the kncoll corresponding to
each simulated reaction time τn2 . We first derive the variance of the mean reaction time τ2,i for the ith

first-step model reaction, from which the variance of ki2 may be computed.
As previously noted, we estimate τ2,i as the weighted average:

τ̂2,i =

∑
Sn
i =1

kncollτ
n
2∑

Sn
i =1

kncoll
=
∑
Sn
i =1

wn
i τ

n
2

where wn
i is the normalized weight

kn
coll∑

Sn
i

kn
coll

for each simulated trajectory.

We assume that all reaction times are drawn from a distribution with mean µτn
2
and variance σ2

τn
2
.

The variance of the individual τn2 differs from the variance of their weighted sum, σ2
τ2,i . Assuming fixed

weights wn
i , this is given by

σ2
τ2,i =

∑
Sn
i =1

(wn
i )

2σ2
τn
2
.
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Thus, we can estimate the variance of the weighted sum from the variance from which the individual
reaction times are drawn. Note that since wn

i is actually a random variable, our estimates are neglecting
this source of variability.

To estimate σ2
τn
2
, the variance of the distribution for individual reaction times, we first propose the

estimator:
σ̂2
τn
2
=
∑
Sn
i =1

wn
i (τ

n
2 − τ̂2,i)

2.

This estimator is biased, and the bias can be quantified by computing the expectation of σ̂2
τn
2
, again

treating wn
i as fixed:

E
[
σ̂2
τn
2

]
=
∑
n

wn
i E

[
(τn2 − τ̂2,i)

2
]

where the summation is over only successful trajectories (i.e. for which Sn
i = 1). All summations in the

remainder of this derivation are similarly performed over only successful trajectories.
Expanding the definition of τ̂2,i yields

E
[
(τn2 − τ̂2,i)

2
]
=E

[
(τn2 −

∑
m

wm
i τm2 )2

]

=E

((∑
m

wm
i

)
τn2 −

∑
m

wm
i τm2

)2


=E

(∑
m

wm
i (τn2 − τm2 )

)2


=E

∑
l,m

wl
iw

m
i (τn2 − τ l2)(τ

n
2 − τm2 )


=E

∑
l,m

wl
iw

m
i (τn2 )

2 − 2
∑
l,m

wl
iw

m
i τm2 τn2 +

∑
l,m

wl
iw

m
i τ l2τ

m
2


=E

(τn2 )2∑
l,m

wl
iw

m
i

− 2E

τn2 ∑
l,m

wl
iw

m
i τm2

+ E

∑
l,m

wl
iw

m
i τ l2τ

m
2


=E

[
(τn2 )

2
](∑

m

wm
i

)(∑
m

wm
i

)
− 2

(∑
l

wl
i

)∑
m

wm
i E [τn2 τ

m
2 ] +

∑
l,m

wl
iw

m
i E

[
τ l2τ

m
2

]

=E
[
(τn2 )

2
]
− 2

∑
m̸=n

wm
i µ2

τn
2
+ wn

i E
[
(τn2 )

2
]+

∑
l ̸=n

∑
m ̸=n

wl
iw

m
i µ2

τn
2
+
∑
m

(wm
i )2 E

[
(τm2 )2

]
=E

[
(τn2 )

2
]
− 2

(∑
m

wm
i µ2

τn
2
+ wn

i σ
2
τn
2

)
+

(∑
l

∑
m

wl
iw

m
i µ2

τn
2
+
∑
m

(wm
i )2σ2

τn
2

)

=E
[
(τn2 )

2
]
− 2

(
µ2
τn
2
+ wn

i σ
2
τn
2

)
+

(
µ2
τn
2
+
∑
m

(wm
i )2σ2

τn
2

)
=E

[
(τn2 )

2
]
− µ2

τn
2
− 2wn

i σ
2
τn
2
+
∑
m

(wm
i )2σ2

τn
2

=σ2
τn
2
− 2wn

i σ
2
τn
2
+
∑
m

(wm
i )2σ2

τn
2

=σ2
τn
2
(1− 2wn

i +
∑
m

(wm
i )2).
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Substituting into the expression for E
[
σ̂2
τn
2

]
,

E
[
σ̂2
τn
2

]
=
∑
n

wn
i σ

2
τn
2
(1− 2wn

i +
∑
m

(wm
i )2)

and, simplifying,

E
[
σ̂2
τn
2

]
= σ2

τn
2
(1−

∑
n

(wn
i )

2).

Thus, an unbiased estimator for σ2
τn
2
is

σ̂2
τn
2

1−
∑

n(w
n
i )

2

and an unbiased estimator for σ2
τ2,i is

σ̂2
τ2,i =

∑
n(w

n
i )

2

1−
∑

n(w
n
i )

2
σ̂2
τn
2
.

So we can estimate the standard deviation of τ2,i with

σ̂τ2,i =

√ ∑
n(w

n
i )

2

1−
∑

n(w
n
i )

2
σ̂τn

2

and, using the fact that ki2 = 1
τ2,i

, we make a linear approximation for the relationship between ki2 and

τ2,i, and propagate that to the variance:

σ̂ki
2
=
(
k̂i2

)2
σ̂τ2,i .

We can further simplify this expression, by letting

Ni,eff =
1∑

n(w
n
i )

2
=

(
∑

n k
n
coll)

2∑
n(k

n
coll)

2

so that

σ̂ki
2
=
(
k̂i2

)2√ 1

Ni,eff − 1
σ̂τn

2

where

σ̂τn
2
=

√∑
n k

n
coll (τ

n
2 − τ2,i)

2∑
n k

n
coll

.

This form of the expression shows the inverse square-root relationship with respect to the number of
samples, which is characteristic of standard errors of the mean over multiple independent samples.

Unfortunately, a few of our reported plots and calculations used a previous, incorrect, version of this
estimate for σ̂ki

2
, but the deviations were less than 5% in cases that we tested.

Finally, we note that this calculation does not account for the additional uncertainty due to variation
in kncoll. Future work may aim to develop a more rigorous estimate that accounts for this source of
variation.
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B Case Study: Entropy-driven Catalyst [?]

The full system is given in Figure 6A (main text). In addition to the productive reactions shown there,
unproductive reactions were included between every pair of resting macrostates for a total of 31 non-
spurious reactions (3 productive, 28 unproductive).

Sequences are taken from [?], Table 1.

Domain Length (nt) Sequence

1 10 CTTTCCTACA
2 24 CCTACGTCTCCAACTAACTTACGG
3 4 CCCT
4 16 CATTCAATACCCTACG
5 6 TCTCCA
6 16 CCACATACATCATATT

Table S1. Sequences for entropy-driven catalyst. Taken from Table 1 of [?].

All Multistrand simulations were performed at 25◦C with sodium concentration of 1 M, magnesium
concentration of 0 M, GT wobble pairing enabled, dangles energy parameter ‘Some’, and Metropolis
rate method. The values of kbi and kuni were 8.01171383 × 105 M−1s−1 and 2.41686715 × 106 s−1,
respectively. These values were determined as the mode of the posterior distribution after training a
simplified Multistrand-like model on an extensive experimental dataset [?].

A single spurious reaction was observed between Substrate and Fuel under these parameters. We
expect this spurious reaction to occur via 0-toehold strand displacement. This spurious reaction becomes
more prominent at higher temperatures.

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

Substrate + Catalyst Intermediate + Signal 869/20881 (2.94±0.14) ×106 111±4
Intermediate + Signal Substrate + Catalyst 151/630000 (1.78±0.20) ×104 112±8

Fuel + Intermediate Output + Catalyst + Waste 278/20258 (9.20±0.78) ×105 2.15±0.14

Catalyst + Waste Catalyst + Waste 19992/20000 (2.83±0.02) ×107 20.5±0.6
Substrate + Signal Substrate + Signal 19997/20000 (1.14±0.01) ×108 (7.33±0.24) ×104

Fuel + Waste Fuel + Waste 19982/20000 (3.84±0.03) ×107 433±53
Catalyst + Signal Catalyst + Signal 19992/20000 (5.69±0.04) ×107 (7.24±0.70) ×104

Catalyst + Catalyst Catalyst + Catalyst 20000/20000 (3.97±0.03) ×107 (1.14±0.10) ×104

Fuel + Catalyst Fuel + Catalyst 20000/20000 (5.31±0.04) ×107 (3.34±0.41) ×104

Fuel + Fuel Fuel + Fuel 19999/20000 (7.41±0.05) ×107 (6.50±0.77) ×104

Waste + Waste Waste + Waste 19977/20000 (4.34±0.03) ×106 (3.39±0.16) ×106

Substrate + Substrate Substrate + Substrate 20000/20000 (1.40±0.01) ×108 (6.87±0.26) ×104

Signal + Waste Signal + Waste 19989/20000 (4.23±0.03) ×107 (2.81±0.05) ×104

Output + Signal Output + Signal 19999/20000 (5.86±0.04) ×107 (4.06±0.70) ×105

Catalyst + Intermediate Catalyst + Intermediate 19999/20000 (4.86±0.03) ×107 (9.54±0.55) ×104

Fuel + Signal Fuel + Signal 19998/20000 (7.76±0.05) ×107 (1.93±0.20) ×105

Intermediate + Signal Intermediate + Signal 629803/630000 (7.20±0.01) ×107 (8.82±0.14) ×103

Signal + Signal Signal + Signal 19994/20000 (8.08±0.06) ×107 (4.22±0.26) ×105

Substrate + Intermediate Substrate + Intermediate 20000/20000 (8.20±0.06) ×107 (9.98±0.50) ×104

Substrate + Fuel Substrate + Fuel 1819978/1820000 (1.05±0.00) ×108 (1.02±0.02) ×103

Output + Substrate Output + Substrate 20000/20000 (7.61±0.05) ×107 (1.45±0.25) ×103

Intermediate + Intermediate Intermediate + Intermediate 20000/20000 (4.68±0.03) ×107 (3.13±0.10) ×105

Output + Catalyst Output + Catalyst 19998/20000 (3.99±0.03) ×107 (5.51±1.00) ×104

Output + Waste Output + Waste 19988/20000 (2.73±0.02) ×107 597±62
Output + Output Output + Output 19996/20000 (3.81±0.03) ×107 (2.03±0.73) ×105

Substrate + Catalyst Substrate + Catalyst 20012/20881 (7.57±0.05) ×107 (8.26±1.31) ×104

Fuel + Intermediate Fuel + Intermediate 19980/20258 (6.47±0.05) ×107 (1.86±0.25) ×104

Output + Fuel Output + Fuel 19995/20000 (5.42±0.04) ×107 (2.15±0.56) ×105

Substrate + Waste Substrate + Waste 19983/20000 (4.05±0.03) ×107 (4.07±0.13) ×104

Output + Intermediate Output + Intermediate 19997/20000 (4.61±0.03) ×107 (2.47±0.07) ×105

Intermediate + Waste Intermediate + Waste 19985/20000 (2.13±0.02) ×107 (3.27±0.09) ×104

Substrate + Fuel rs F:LB:OB + rs SB 1/1820000 78.8±111.4 603±inf

Table S2. Reaction rate estimates for all productive, unproductive, and (observed) spurious reactions in the
entropy-driven catalyst. The Trajectories column shows the number of trajectories corresponding to each reaction
over the total number of trajectories simulated for the reactants.
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[C]0 (nM) KinDA (min) Zhang et al. [?] (min) Ratio (Zhang et al./KinDA)

10 2.2 8.0 3.6
5 3.4 14.5 4.3
2 7.2 36.2 5.0
1 13.6 73.1 5.4
0.5 26.4 147.0 5.6
0.2 65.0 367.8 5.7
0.1 129.4 731.5 5.7
0.05 258.9 1443.0 5.6
0.02 652.7 3459.4 5.3

Table S3. System half-completion times for varying initial catalyst C concentrations. Half-completion times
estimated by simulating the mass-action ODEs for the rates in Table S2 and finding the time at which [OB]=5 nM.
Initial concentrations of S and F are 10 nM and 13 nM for all simulations. Half-completion times were also
estimated using the published reaction rates in Zhang et al. [?]. KinDA overestimates the reaction rates so all
half times are much lower than those calculated with the published rates, by a factor of about 4-6.

Resting Macrostate Complex Samples p (%)

Input
Input 483792/500500 96.7±0.0

spurious 16708/500500 3.34±0.03

Output
Output 431370/500500 86.2±0.0
spurious 69130/500500 13.8±0.0

Waste
Waste 500020/500500 99.9±0.0
spurious 480/500500 (9.61±0.44) ×10−2

Signal
Signal 382146/500500 76.4±0.1
spurious 118354/500500 23.6±0.1

Intermediate
Intermediate 496772/500500 99.3±0.0
spurious 3728/500500 (7.45±0.12) ×10−1

Substrate
Substrate 364393/500500 72.8±0.1
spurious 136107/500500 27.2±0.1

Fuel
Fuel 433740/500500 86.7±0.0

spurious 66760/500500 13.3±0.0
Table S4. Probabilities of p-approximations for each resting complex, with p = 0.7. The Samples column shows
number of sampled conformations that p-approximate the resting complex (or are p-spurious) over the total
number of sampled conformations.
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C Case Study: Multiple Desired Pathways

The full system is given in Figure 8 (main text). The sequences were randomly generated from a four-
letter alphabet with an equal probability of each base, with the exception of toeholds sw and ss, which
were chosen to be weak and strong toeholds, respectively.

Domain Length (nt) Sequence

t 6 GGAGCC
s = sw 6 ATATAT
s = ss 6 GCGCGC

2 10 GGCAAACAAG
3 10 CGGCAGAATT
a 10 CGCATTTGCC
b 10 TACCTTTTCC
c 10 CAAAGCCCTT

Table S5. Sequences for the multiple fates case study.

For both the unmodified (with s = sw) and modified (with s = ss) systems, the reactions A+ B →
C +D and A+B → E + F were analyzed. Multistrand simulations were run with the same parameters
as the entropy-driven catalyst (Appendix B).

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

Gate + Interloper Fate1 Cpx1 + Fate1 Cpx2 13532/5000000 (7.71±0.09) ×104 (1.54±0.02) ×103

Gate + Interloper Fate2 Cpx1 + Fate2 Cpx2 7/5000000 19.2±10.3 862±107
Gate + Interloper Gate + Interloper 4976331/5000000 (3.27±0.00) ×107 (6.04±0.02) ×105

Gate + Interloper rs strand23:strandGATE + rs strand123:strand3A 43/5000000 665±143 (1.66±0.40) ×103

Table S6. Reaction rate estimates for reactions in the multiple fates case study (unmodified system, s = sw).
The Trajectories column shows the number of trajectories corresponding to each reaction over the total number
of trajectories simulated for the reactants.

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

Gate + Interloper Fate1 Cpx2 + Fate1 Cpx1 1611/5042000 (5.55±0.20) ×103 270±6
Gate + Interloper Fate2 Cpx2 + Fate2 Cpx1 200/5042000 672±67 268±18
Gate + Interloper Gate + Interloper 5001511/5042000 (1.95±0.00) ×107 (3.93±0.02) ×105

Gate + Interloper rs strand23:strandGATE + rs strand123:strand3A 1/5042000 3.97±5.62 491±inf

Table S7. Reaction rate estimates for reactions in the multiple fates case study (modified system, s = ss). The
Trajectories column shows the number of trajectories corresponding to each reaction over the total number of
trajectories simulated for the reactants.
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Resting Macrostate Complex Samples p (%)

B (unmodified)

B1 14477/201612 7.18±0.06
B2 83652/201612 41.5±0.1
B3 11072/201612 5.49±0.05
B4 50/201612 (2.53±0.35) ×10−2

spurious 92361/201612 45.8±0.1

B (modified)

B1 39381/200465 19.6±0.1
B2 0/200465 (4.99±4.99) ×10−4

B3 46345/200465 23.1±0.1
B4 0/200465 (4.99±4.99) ×10−4

spurious 114739/200465 57.2±0.1
Table S8. Resting macrostate conformation probabilities for resting macrostate B (see main text) for both
s = sw and s = ss. The Samples column shows number of sampled conformations that p-approximate the resting
complex (or are p-spurious) over the total number of sampled conformations.
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D Case Study: Mechanisms Combining 3-way and 4-way Branch Migration

Domain Length (nt) Sequence

a 22 CAGTCCCAAGTCACCACCTAGC
b 22 GCACTCGCGATACGAGGCCTGG
c 22 CCAGATCAGCAGCCATTCGTTC
t1 6 CCGTTT
t2 6 ACATCC
t3 10 CCTCTACTCA
T2 2 TT
d1s 16 CCAAACCTTCATCTTC
d2 6 TACTCG

Table S9. Sequences for case study, taken from Kotani & Hughes [?]. Note that our simulations used a modified
reporter complex from [?] that uses domain d1s rather than d1. d1s is produced by removing 2 nt from the 5’
end of d1.

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

S1 + C1 P1 + I1 19/5000 (5.23±1.70) ×105 174±28
P1 + I1 S1 + C1 0/5000000 < 78.7 —
I1 + S2 C1 + P3 + P2 21/5000 (9.49±2.92) ×105 0.66±0.13
P2 + R D + RW 72/5000 (1.34±0.22) ×106 2.66±0.32
S2 + R S2-R 154/247 (3.18±0.30) ×107 1.57±0.13 ×107

I1 + S2-R C1 + P3 + D + RW 14/25000 (1.14±0.43) ×105 1.14±0.24
Table S10. Reaction rate estimates for the Kotani & Hughes (2017) [?] case study. All simulations were run in
ordered-complex mode, except for the unexpected reaction, S2 + R → S2-R, which has only one product and
was run in count-by-domain mode. The Trajectories column shows the number of trajectories corresponding to
each reaction over the total number of trajectories simulated for the reactants. Simulation parameters were the
same as for the entropy-driven catalyst (Appendix B).
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E Case Study: Binding Reactions and Flavors of Macrostates

DNA sequences were taken from Groves et al. [?]. All Multistrand simulations used the same parameters
as with the entropy-driven catalyst (Appendix B).

Domain Length (nt) Sequence

a 16 GTAGGAGTGGAGGTGA
1 6 GGGAAT
2 6 TCTTAC
b 16 CAACACACACACACCC
3 6 TGATGA
4 6 AACTAC

Table S11. Sequences for case study, taken from Groves et al. [?].

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

InA + OR OR InA Waste + OR InA Sig 3160/104931 (1.66±0.04) ×106 50.7±0.9
InB + OR OR InB Waste + OR InB Sig 3136/59496 (2.99±0.07) ×106 189±3
InA + OR InA + OR 101490/104931 (4.71±0.02) ×107 (4.85±0.23) ×103

InB + OR InB + OR 56360/59496 (5.01±0.02) ×107 (4.39±0.35) ×104

Table S12. Reaction rate estimates for the OR gate (mode: ordered-complex). The Trajectories column shows
the number of trajectories corresponding to each reaction over the total number of trajectories simulated for the
reactants.

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

InA + OR OR InA Waste + OR InA Sig 3163/103313 (1.67±0.04) ×106 50.5±0.9
InB + OR OR InB Waste + OR InB Sig 3136/61394 (2.88±0.07) ×106 189±3
InA + OR InA + OR 99856/103313 (4.71±0.02) ×107 (5.28±0.25) ×103

InB + OR InB + OR 58258/61394 (5.02±0.02) ×107 (5.04±0.42) ×104

Table S13. Reaction rate estimates for the OR gate (mode: count-by-complex). The Trajectories column shows
the number of trajectories corresponding to each reaction over the total number of trajectories simulated for the
reactants.

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

InA + OR OR InA Waste + OR InA Sig 3159/106333 (1.63±0.04) ×106 50.9±0.9
InB + OR OR InB Waste + OR InB Sig 3121/62556 (2.80±0.07) ×106 183±3
InA + OR InA + OR 102874/106333 (4.71±0.01) ×107 (5.02±0.23) ×103

InB + OR InB + OR 59435/62556 (5.02±0.02) ×107 (4.76±0.37) ×104

Table S14. Reaction rate estimates for the OR gate (mode: count-by-domain). The Trajectories column shows
the number of trajectories corresponding to each reaction over the total number of trajectories simulated for the
reactants.
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Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

InB + AND AND InB 2583/6708 (1.26±0.03) ×107 (1.13±0.03) ×107

InA + AND InB AND Sig + AND Waste 3149/94505 (1.12±0.03) ×106 60.3±1.1
InB + AND InB + AND 4125/6708 (1.88±0.03) ×107 (2.01±0.05) ×107

InA + AND InB InA + AND InB 91065/94505 (2.86±0.01) ×107 (3.16±0.11) ×103

Table S15. Reaction rate estimates for the AND gate (mode: ordered-complex). The Trajectories column shows
the number of trajectories corresponding to each reaction over the total number of trajectories simulated for the
reactants.

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

InB + AND AND InB 3071/33859 (3.10±0.08) ×106 (5.12±0.08) ×103

InA + AND InB AND Sig + AND Waste 3149/97322 (1.09±0.03) ×106 57.5±1.0
InB + AND InB + AND 30788/33859 (2.85±0.02) ×107 (2.85±0.14) ×105

InA + AND InB InA + AND InB 93865/97322 (2.87±0.01) ×107 (3.20±0.11) ×103

Table S16. Reaction rate estimates for the AND gate (mode: count-by-complex). The Trajectories column shows
the number of trajectories corresponding to each reaction over the total number of trajectories simulated for the
reactants.

Reactants Products Trajectories k1 (M−1s−1) k2 (s−1)

InB + AND AND InB 3066/36102 (2.89±0.07) ×106 303±5
InA + AND InB AND Sig + AND Waste 3151/96431 (1.10±0.03) ×106 57.2±1.1
InB + AND InB + AND 33036/36102 (2.86±0.02) ×107 (2.28±0.08) ×104

InA + AND InB InA + AND InB 93002/96431 (2.87±0.01) ×107 (2.94±0.10) ×103

Table S17. Reaction rate estimates for the AND gate (mode: count-by-domain). The Trajectories column shows
the number of trajectories corresponding to each reaction over the total number of trajectories simulated for the
reactants.
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