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I. LIST OF SUPPLEMENTAL MOVIES

S1 Motion of filament under tip follower force of Fa = 75 subject to non-planar perturbation starting from the
straight equilibrium. The resulting spinning motion has a locked curvature at steady state.

S2 Motion of filament under tip follower force of Fa = 75 subject to planar perturbation starting from the straight
equilibrium. The resulting flapping motion is confined to a plane.

S3 Robustness of transition from straight to 3D spinning. At Fa = 180, spinning is stable. Initial configuration is
set by adding a small out-of-plane perturbation to the planar solution. The basin of attraction of these spinning
solutions seems to consist of all non-planar perturbations.

S4 Robustness of transition from 3D spinning to 2D flapping. At Fa = 200, flapping is stable. Initial configuration
is set to the spinning solution obtained at Fa = 185. At Fa = 200, the filament trajectory converges to in-plane
motion. The basin of attraction of these planar flapping solutions seems to consist of all initial perturbations.

S5 Bead-spring models under non-planar perturbations at Fa = 5. As we increase the number of links from 2 to 6,
stable 2D flapping motions emerge from 3D spinning motions.

II. NUMERICAL METHODS AND VALIDATIONS

Reference Configuration

Current Configuration

FIG. 1: Discretization of elastic filament

We discretize the filament’s centerline into n + 1 vertices r1, . . . , rn+1 and n straight edges `i = ri+1 − ri, where
i = 1, . . . , n, in the spirit of [1] and [2]; see Fig. 1. The unit tangent to edge i is defined as ti = `i/`i where `i = ‖`i‖.
Inextensibility is enforced weakly by considering large tensile stiffness S = EA along the filament’s centerline. That
is to say, t is allowed to experience slight extension or compression, inducing a local axial strain si = (`i/ˆ̀

i)ti − di3,
where ˆ̀

i is a strain-free reference configuration length. The linear velocities v1, . . .vn+1 are assigned to vertices. The
body frames are naturally assigned to edges, so is the rotation matrix Q; we let {d1,i,d2,i,d3,i = ti} and Qi denote
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the discrete representation of these quantities. Here, we defined the rotation matrix Q using the convention xb = Qx,
where xb is the position vector expressed in body-frame coordinates (see appendix A). Throughout this work, the
subscript b will be used to emphasize when vectors are represented in the body frame.

The skew-symmetric matrix κ× = (∂Q/∂s)TQ can be expressed in the body frame by a change of basis as κ×
b =

Qκ×QT = Q(∂Q/∂s)T. The solution to the differential equation κ×
b = Q(∂Q/∂s)T is of the form Q(s + ∆s) =

exp(−κ×
b ∆s)Q(s), given that the curvature stays constant in the region ∆s. We can thus define the discrete curvature

κ×
b,i such that Qi = exp(−κ×

b,i`i)Qi−1, leading to

κ×
b,i = −

log
(
QiQ

T
i−1

)
`i

. (1)

Here, `i = 1
2 (`i−1 + `i) is a ‘Voronoi’ integration domain spanning from the midpoint of the previous edge to that of

the next edge. Remember that this definition of discrete curvature is only defined at an interior vertex i = 2, . . . , n.
To obtain the bending dynamics of the filament, we first use equation (3) of the main text to solve for the internal

elastic force Ni in the body frame of the current geometric configuration of the filament,

Nb,i = tb,i ×

D[Bb,iκb,i
]

+A
[

(κb,i`i)× (Bb,iκb,i)︸ ︷︷ ︸
frame transport

]+ (EA)sb,i. (2)

Here, the finite difference operator D and discrete average operator A take quantities on i-th and (i+ 1)-th vertices
as inputs and output quantities on the i-th edge (i = 1, · · · , n). Since `i and κb,i are only defined at interior vertices,
we need to pad trivial (zero) quantities for boundary vertices (i = 1 and n + 1). In other words, the j-th output of
D[(·)i] is (·)iδi,j+1 − (·)iδij . Similarly, the j-th output of A[(·)i] is [(·)iδi,j+1 + (·)iδij ]/2. Note that inextensibility is
enforced weakly by setting the axial component of Nb,i to be (EA) sb,i with a large stiffness EA.

Next, we invert the force balance in equation (1) using the expression for the fluid force from equation (2) of the
main text to get the inertial frame velocity vi of each vertex

vi =
1

γζ

(
I + (γ − 1)A

[
ti
]
⊗A

[
ti
])(
D
[
Ni

]
− fa,i`i

)
. (3)

Here the operators D and A actually convert n edge quantities to n+ 1 vertex quantities unlike in (2).
In the numerical implementation, we solve (2) and (3) in the strain-free reference configuration. Therefore we need

to adjust all quantities expressed in the current geometric configuration to the strain-free reference state (we use the
hat notation (̂·) to denote the latter). Provided that cross-sections retain their circular shapes at all times, we only
need to insert a local dilation scalar ei = `i/ˆ̀

i at appropriate places in the discretized equations to ensure consistency.
Specifically, due to the conservation of volume of an infinitesimal volume element, a dilation in edge length translates
to a shrinkage of cross sectional area; namely, we have `iAi = ˆ̀

iÂi which implies that Ai = Âi/ei. Consequently, the
discrete bending/twisting rigidity tensor B̂i and tensile stiffness Ŝi in the stain-free reference configuration are related
to Bi and Si in the current configuration via Bi = B̂i/e

2
i and Si = Ŝi/ei. All length quantities need to include a

factor of ei when converted to the strain-free reference configuration. In addition, because we used the integration
domain `i in the momentum equation (2), we need to average all quantities that vary with arc-length over the voronoi
region `i. For example, the bending rigidity B and dilation factor e are averaged over `i using

B̂i =
B̂i

ˆ̀
i + B̂i−1

ˆ̀
i−1

2ˆ̀
i

, Ei =
ei ˆ̀i + ei−1

ˆ̀
i−1

2ˆ̀
i

.

When adjusting the generalized curvature with respect to the dilation factor, we write κi = κ̂i/Ei.
We use standard time integrators for stiff equations (MATLAB’s ode15s) to solve (3) and propagate the filament

position ri forward in time. To closed the system, we enforce the clamped boundary condition by fixing r1 = 0 and
t1 = e3, while leaving the free end unconstrained.

We test our numerical method on the deflection and buckling behavior of a cantilever beam submerged in viscous
fluid. Since the steady state shape of a cantilever beam under transverse tip load would remain the same in the
presence of fluid drag, it is sound to compared our simulation results with the linear Euler-Bernoulli theory at a
large t (in the absence of local filament shear). Indeed we observe first order convergence of our deflected filament
at t = 20L4µ/B as we increase spatial resolution; See Fig. 2. Similarly, since the onset of Euler buckling of a
cantilever beam under axial compression at one end should also remain equal regardless of the surrounding medium,
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FIG. 2: Cantilever Deflection in Stokes’ Regime. A cantilever beam subjected to a tip load of 0.1B/L3 submerged in
viscous fluids is simulated and its state at t = 20L4µ/B is shown to converge to Euler-Bernoulli theory.
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FIG. 3: Euler Buckling in Stokes’ Regime. Euler buckling of a clamped-clamped beam is simulated in viscous fluids
under vertical compressive tip loads. The critical force thresholds converge to the theoretical value in the limit of spatial

refinement. Snapshots of the actual buckled shapes are shown for a tip load of 80B/L2.

we compare the threshold of buckling event with the linear theory result of Fcrit = 4π2(B/L2). Again we observe
first order convergence in the relative error in the limit of spatial refinement. Moreover, our numerical simulation also
give the nonlinear buckled shape of the filament.

To conclude, we note that the actual algorithm developed is slightly more general in that we can allow twist in
the filament following the methods in [1]. In the presence of properly-chosen applied twists, the algorithm correctly
exhibit the localized helical buckling instability as well as the Mitchell instability [3–7]; See Fig. 4.
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FIG. 4: Helical Buckling and Mitchell Instability in Stokes’ Regime. Helical buckling occurs when an elastic rod is
twisted at its ends to a sufficient degree. Mitchell instability describes the buckling behavior when a sufficiently twisted rod is

glued at its two ends. In both case, the time snapshots from our simulation prove that we recover the desired behavior.
Quantitative verifications are omitted for brevity.

III. DERIVATION OF LINEARIZED EQUATIONS

Starting from the force and moment balance and constitutive relations

0 =
∂N

∂s
+ fa + fh

0 =
∂M

∂s
+ t×N

M = Bκ

Here B = B · diag(1, 1, 2) is the constant bending rigidity, and κ = k1d1 + k2d2 is the generalized curvature vector.
Here we assume there are no twist moments. The usual curvature κ and torsion τ of the filament as a space curve in
R3 can be computed as

κ(s) = ||κ(s)|| =
√
k2

1 + k2
2, (4)

τ(s) =
∂

∂s

[
cos−1

〈
κ(s)

κ(s)
,
κ(0)

κ(0)

〉]
=

∂

∂s

[
tan−1 k2

k1

]
= − ∂

∂s

[
tan−1 k1

k2

]
:=

∂θ

∂s
. (5)

Without loss of generality, we assume that at time t = 0, the curvature vector κ(0) = κ(0)b is aligned with the
binormal vector b in Frenet-Serret frame. This also means that for a planar (torsion-free) filament, the generalized
curvature is the torsion-free Darboux vector D = κb ≡ k2d2. In general, the Darboux vector is given by D = κb−τt.

In this parallel transport (Bishop) frame (d1,d2,d3 ≡ t), which is equivalent to the material frame without twist,
we have

∂

∂s

 d1

d2

d3 ≡ t

 = κ×

 d1

d2

d3 ≡ t

 =

 0 0 −k2

0 0 k1

k2 −k1 0

 d1

d2

d3 ≡ t

 .
Consider the moment balance in (4) and substitute the constitutive relation for the moment to get

0 = (Bκ)s + t×N

0 = B
[
k1,sd1 + k2,sd2 +(((

((((
((

k1(k2t) + k2(−k1t)
]

+ t×N

0 = t× 0 = B (t× [k1,sd1 + k2,sd2]) + t× (t×N)

0 = B [k1,sd2 − k2,sd1] + (t ·N)︸ ︷︷ ︸
=:Λ

t− ��
�*1

(t · t)︸ ︷︷ ︸
inextensible

N
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where Λ is a lagrange multiplier for the inextensibility constraint. Note that to match the equations derived using
Frenet-Serret frame in 2D, we need to set Λ 7→ Λ − Bκ2. Take the derivative of the above equation with respect to
arclength s, using the notation (),s = ∂()/∂s, we get

0 = 0s = B [k1,ssd2 − k2,ssd1 + k1,s(k1t)− k2,s(−k2t)] + (Λt)s −Ns

−fh = B [k1,ssd2 − k2,ssd1 + (k1k1,s + k2k2,s)t] + (Λt)s + fa

ζ
[
ttT + γ(d1d

T
1 + d2d

T
2 )
]
v = −fh = B [k1,ssd2 − k2,ssd1 + κκst] + Λst + Λ(k2d1 − k1d2) + fa (6)

and ζ the drag coefficient with γ representing its anisotropy. Now if we invert the drag coefficients and make use of
only an axial applied force (fa = −fat), we can rewrite the above as

v =
d1

ζγ
(−Bk2,ss + k2Λ) +

d2

ζγ
(Bk1,ss − k1Λ) +

t

ζ
[Bκκs + Λs − fa]

Now, normalize the equation by filament length L and bending rigidity B, we require s 7→ 1
Ls, curvatures ki 7→ Lki,

tension force Λ 7→ B
L2 Λ, force density fa 7→ B

L3 fa, and velocity v 7→ B
γζL3v. In dimensionless form, we have

v = d1(−k2,ss + k2Λ) + d2(k1,ss − k1Λ) + γt [κκs + Λs − fa]

In order to rewrite the left-hand side in terms of ‘known’ variables (ki,di, t), we differentiate the above w.r.t. s again
to get, using the notation ()t = ∂()/∂t,

tt = vs =t
[
γ
(
κκss + fa,s + κ2

s + Λss
)

+ k1(−k1Λ + k1,ss)− k2(k2Λ− k2,ss)
]

+

d2 [−Λk1,s − k1Λs − γk1(−fa + κκs + Λs) + k1,sss] +

d1 [Λk2,s + k2Λs + γk2(−fa + κκs + Λs)− k2,sss]

Again from inextensibility constraint t · tt = 0, so the tangent component of above quantity is 0. Finally, we have the
following system of scalar equations

0 = γ
(
κκss + fa,s + κ2

s + Λss
)
− κ2Λ + k1k1,ss + k2k2,ss (7)

d2 · tt = − Λk1,s − k1Λs − γk1(−fa + κκs + Λs) + k1,sss (8)
d1 · tt = Λk2,s + k2Λs + γk2(−fa + κκs + Λs)− k2,sss. (9)

which we slightly rearrange to get

0 = γ (κκs − fa + Λs)s − Λκ2 + k1k1,ss + k2k2,ss

−d2 · tt = (Λk1)s + γk1(κκs − fa + Λs)− k1,sss

d1 · tt = (Λk2)s + γk2(κκs − fa + Λs)− k2,sss

The first equation leads to the contraint equation

γ (κκs − fa + Λs)s = Λκ2 − k1k1,ss − k2k2,ss (10)

Take derivative of the last two equations w.r.t. s to get

−(−k1,t + k2d2 · d1,t) = (Λk1)ss + γ[k1(κκs − fa + Λs)]s − k1,ssss (11)
(k2,t − k1d1 · d2,t) = (Λk2)ss + γ[k2(κκs − fa + Λs)]s − k2,ssss (12)

Multiply (11) and (12) by k1 and k2, respectively, to get

k1(k1,t − k2d2 · d1,t) = k1(Λk1)ss + γk1[k1(κκs − fa + Λs)]s − k1k1,ssss

k2(k2,t − k1d1 · d2,t) = k2(Λk2)ss + γk2[k2(κκs − fa + Λs)]s − k2k2,ssss
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Take the sum of the above two equations

k1k1,t + k2k2,t = k1(Λk1)ss + γk1k1,s(κκs − fa + Λs) + k2
1[Λκ2 − k1k1,ss − k2k2,ss]− k1k1,ssss

+ k2(Λk2)ss + γk2k2,s(κκs − fa + Λs) + k2
2[Λκ2 − k1k1,ss − k2k2,ss]− k2k2,ssss

Upon further simplifications, we arrive at

k1k1,ssss + k2k2,ssss + κκt = Λssκ
2 + (2 + γ)Λsκκs + (Λ− κ2)(k1k1,ss + k2k2,ss)

+ γ(κκs)
2 − γκκsfa + Λκ4 (13)

Now, multiply (11) and (12) by k2 and k1 respectively, to get

k2(k1,t − k2d2 · d1,t) = k2(Λk1)ss + γk2[k1(κκs − fa + Λs)]s − k2k1,ssss

k1(k2,t − k1d1 · d2,t) = k1(Λk2)ss + γk1[k2(κκs − fa + Λs)]s − k1k2,ssss

The difference of the above two equations yields

k2k1,t − k1k2,t − k2
2d2 · d1,t + k1d1 · d2,t = k2(Λk1)ss − k1(Λk2)ss − k2k1,ssss + k1k2,ssss

+ γk2[k1(κκs − fa + Λs)]s − γk1[k2(κκs − fa + Λs)]s

Upon further simplifications, we get

k2k1,ssss − k1k2,ssss + k2k1,t − k1k2,t − κ2(d2 · d1,t) = k2(Λssk1 + 2Λsk1,s + Λk1,ss)

−k1(Λssk2 + 2Λsk2,s + Λk2,ss)

+ γ(k2k1,s − k1k2,s)(κκs − fa + Λs)

and

k2k1,ssss − k1k2,ssss +

��
���

���
���

���:
κ2nt · b

k2k1,t − k1k2,t − κ2(d2 · d1,t) = Λ(k2k1,ss − k1k2,ss)

+ (k2k1,s − k1k2,s)[γκκs − γfa + (2 + γ)Λs] (14)

To arrive at the last expression, note that we have

k2k1,t − k1k2,t = − κ2θt

(d2 · d1,t) = θt − nt · b

based on k1 = −κ sin θ, k2 = κ cos θ, τ = θs, d1 = cos θb− sin θn, and d2 = sin θb+ cos θn. These geometric relations
also yield

k1k1,ss + k2k2,ss = κ(κss − κτ2)

k1k1,ssss + k2k2,ssss = κ(κssss + τ(κτ3 − 6κssτ − 2κsτs − 4κτss)− 3κτ2
s )

k2k1,s − k1k2,s = − κ2τ

k2k1,ss − k1k2,ss = − κ(2κsτ + κτs)

k2k1,ssss − k1k2,ssss = κ(τ(4κsτ
2 + 6κττs − 4κsss)− 6κssτs − 4κsτss − κτsss)

Substituting these relations into (10), (13) and (14), we get

γκκss + γκ2
s + γ(−fa + Λs)s = Λκ2 − κκss + κ2τ2

κssss + τ(κτ3 − 6κssτ − 2κsτs − 4κτss)− 3κτ2
s + κt =

Λssκ+ (2 + γ)Λsκs + (Λ− κ2)(κss − κτ2) + γκκ2
s − γκsfa + Λκ3

τ(4κsτ
2 + 6κττs − 4κsss)− 6κssτs − 4κsτss − κτsss + κnt · b =

− Λ(2κsτ + κτs)− κ2τ [γκκs − γfa + (2 + γ)Λs]
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Expand about straight configuration κ = τ = 0 and linearize in terms of Λ, κ, and τ to get

(−fa + Λs)s = 0

κssss + κt − Λκss = 0

0 = 0

That is to say, the last equation is trivially satisfied and the torsion is not featured in the linear equations. The linear
equations only capture 2D deformations.
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Appendix A: Rotation Group Conventions

Consider an inertial frame (ei) and a body frame (di), i = 1, 2, 3. Define the rotation matrix Q as the operator
that transforms vectors from inertial frame to body frame. We have

ei = Qdi, (A1)

where

Q =

−dT
1−

−dT
2−

−dT
3−

 . (A2)

A vector x can be represented in the inertial frame or the director body frame: x = xiei = xb,idi. To find the
relationship between coordinates Xi and xi, rewrite

xiei ≡

 | | |
e1 e2 e3

| | |

x1

x2

x3

 = I

x1

x2

x3

 = QTQ

x1

x2

x3


=

 | | |
d1 d2 d3

| | |

Q

x1

x2

x3

 =:

 | | |
d1 d2 d3

| | |

xb,1xb,2
xb,3

 ≡ xb,idi
(A3)

Thus, we get xb = Qx. Moreover, a similarity transform of any operator T from ei coordinates to di coordinates is
given by QTQT.

We can also find the derivative of the directors as

∂

∂s
dj =

∂

∂s

(
QTej

)
=

∂

∂s

(
QT
)
ej =

∂

∂s

(
QT
)
Qdj =: κ× dj , (A4)
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where we used the fact that QTQ = I implies that ∂
∂s

(
QT
)
Q is skew-symmetric. Furthermore, we have

κ× (·) = Q̇TQ(·)
Q(κ× (·)) = QQ̇TQ(·)

(Qκ)× (Q(·)) = QQ̇TQ(·)
κb × (Q(·)) = QQ̇TQ(·)

κ×
b = QQ̇T.

(A5)
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