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1. Results for the original birth-death rule

In figure S1, we report the fraction of cooperators as a function of the benefit-to-cost
ratio b/c in the three different types of population structures under the birth-death
rule with random dispersal mode under which the offspring replaces a random
neighbour of the parent. We observe that under the original birth-death rule,
cooperators cannot survive in random-regular and small-world networks, even if the
benefit-to-cost is high. Furthermore, in scale-free networks just a few cooperators
survive when the benefit-to-cost ratio is high. These results show that the original
birth-death rule greatly suppresses the evolution of cooperation in social networks [1],
even if initially half of the nodes are occupied by cooperators and the benefit-to-cost

ratio is high.
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Figure S1: Fraction of cooperators as a function of the benefit-to-cost ratio b/c

without offspring-preferred or parent-preferred dispersal, that is, « = f = 0. Under



the birth-death update rule with random dispersal mode, it is extremely difficult for
cooperation to evolve in different types of population structures. However, for large
benefit-to-cost ratio just a few cooperators can survive in scale-free networks. Here,
the intensity of selection w is fixed at 0.01 and initially each individual is designated

either as a cooperator or a defector with equal probability.

2. Pair-approximation method for birth-death rule with parent-

preferred and offspring-preferred dispersal

By assuming that cooperators are distributed uniformly among the network, we can
use the pair-approximation method to theoretically study the evolutionary dynamics
of cooperation on regular graphs [1]. Let p. and pp respectively denote the fractions
of cooperators and defectors in the population, so that p; + pp = 1. Let pcc, Pep»
Ppc, and ppp respectively denote the factions of CC, CD, DC, and DD links. We have
Pcc +Pep +Poc +Pop =1 and pep =ppe - Let qyy denote the conditional
probability to find an X-player given that the adjacent node is occupied by a Y-player.
Here, both X and Y stand for C or D. Then we have pyy = qxypy and q¢x + qpix =
1. As a result, based on the relationships of the quantities, we can see that the
dynamics of the system can be described by only two quantities, p and p.¢.

Now, let us consider the probability that a player is selected for reproduction
in a regular graph with the number of neighbours k. We know that the fitness of a
cooperator who has k. cooperative neighbours and k, = k — k. defective neighbours
is fp = e”keMutkoMi2) and hence the probability that such cooperators are selected
for reproduction is proportional to

k\ ke k
A=pc (kc) qC|CCqDl|)CfC- (1)
Similarly, the fitness of a defector who has k. cooperative neighbours and k
defective neighbours is f, = e"(kcMa1+koM22) = and hence the probability that such
defectors are selected for reproduction is proportional to
k\ ke k
B =pp (kc) qchqD?DfD- 2

Next, we consider the probability that a player’s offspring chooses a neighbour
to replace. During the replacment process, the parent can explore the expected fitness

in four different situations. In the first situation when a cooperator’s offspring



replaces a cooperative neighbour we have

— pW(kcMy1+kpM
fecscy =€ (kcMyy+kpMiz)

and

— ow[My1+(k=1)qcicMi1+(k—1)qpcM
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respectively representing the expected fitness of the cooperative parent and its
offspring.
In the second situation when a cooperator’s offspring replaces a defective

neighbour, we have

fecopy = eW (ke + DMy +(kp —1)M12]

and

—_ w[Mi1+(k-1 Mq1+(k—1 M
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respectively represent the expected fitness of the cooperative parent and its offspring.
In the third situation when a defector’s offspring replaces a cooperative

neighbour, we have

fP(D—>C) = eWlkc=1Mz1+(kp +1)M22],

and

— wl(k=1)q¢|cMay +(k—1)qp(c Moz +M
fO(D—>C) = eWlk=DacicMz1+(k=1)qp|c M2z +M22]

respectively represent the expected fitness of the defective parent and its offspring.
In the fourth situation when a defector’s offspring replaces a defective

neighbour, we have

_ kcMy1+kp M
fP(D—>D) = eW(kcMa1+kp 22)'

and

— ,w[(k—-1 My +(k—1 Moo +M
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respectively represent the expected fitness of the defective parent and its offspring.
Based on the information from the four different situations, the probability that

a cooperator’s offspring chooses to replace a defective neighbour is given by

kDf(?(C—)D)fPﬂ(CeD)

B B )
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As a result, p. increases by 1/N with probability
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Correspondingly, the number of CC pairs increases by 1+ q¢p(k— 1) and pec
increases by 2[1 + q¢jp(k — 1)]/(kN) with probability

B
2[1+qcpp(k —1)] kpfoc-pyfpcon
PI‘Ob(A Pcc = klN ) =A ( )

B B '
kDfOQ(CAD)fP(CeD) + kaOQ(CﬁC)fP(CaC)
Similarly, the probability that a defector’s offspring chooses to replace a cooperative

neighbour is given by

kefSm-cyfomcy
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As aresult, p. decreases by 1/N with probability

1 ka(gl(DaC)fPﬂ(D—)C)
Prob(ApC =—N)= z B - 3 - 3 .
kc+kp=k kaO(D—’C)fP(D—%,‘) + kDfO(D—)D)fP(DaD)

Correspondingly, the number of CC pairs decreases by (k — 1)q¢|c and p¢ decreases

by 2(k — 1)q¢|c/(kN) with probability

8
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Combining the two probability calculations above, we have

_ 1 1 1 1
Pc =N-Prob<ApC =N)—N-Prob(ApC :_N)

k
_ 1 2 kDan(CaD)fP’B(C—)D)

4 4
N i=o kofocopyfpcopy T kefoe-orfpcse

k
1 g kaOa(D—>C)fpﬂ(D—>c)

B B '
Nkc=0 kaO“(DHC)fP(DeC) + kDfoa(D%D)fP(DﬁD)

3)

and

. 2[1+qepp(k —1)]
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_ z 2[1+qcpk — 1] 2 kDfoa(C—>D)fPB(C—>D)
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After the variable substitution, we use numerical integration to solve the two
differential equations above for p.. Figure 2 shows the cooperation level depending
on offspring-preferred dispersal strength @ and parent-preferred dispersal strength

as predicted by this pair-approximation method.

3. Death-birth update rule with parent-preferred and offspring-

preferred dispersal

Initially, each player x is designated to play either C or D, and occupies one site of the
network. At each time step, each player x engages in pairwise interactions with all its
adjacent neighbours, and then collects its payoff P, based on the payoff matrix
parameters. Furthermore, player x obtains its fitness associated with the payoff
information, given as
fe =e",

where w is the intensity of selection.

After playing the games, a random individual x is chosen to die, and
subsequently the neighbours compete for the empty site. The probability that each

neighbour y competes for the empty site is defined as

8
fo-0ly -0

d =
y (x) B ’
ZZEQy fz%y—)z)f;/(y_)Z)

where the sum in the denominator is over all the neighbours of y (€, is the set of
neighbours of individual y), f,(, -,y denotes the expected fitness of individual z when
the offspring of individual y occupies the site of neighbour z, and £, .., denotes the
expected fitness of individual y when the offspring of individual y occupies the site of
neighbour z. Here, a (a > 0) represents the offspring-preferred dispersal strength,
B (B > 0) represents the parent-preferred dispersal strength, and d,,(, characterizes

the desirability strength of the offspring of individual y to move into the site of
individual x.

Based on the neighbour’s desirability strength, the probability that individual y



can occupy the site of individual x is

p bk
Yo Zieﬂx di(x)fi’

where the sum in the denominator is over all the neighbours of x (£, is the set of
neighbours of individual x), and f; denotes the obtained fitness of individual i from
the interactions with its current neighbours. Here, d;.) X f; represents the
competition strength of individual i for the site of individual x. And when a = 0 and

B = 0, this rule recovers the original death-birth update rule [2].

4. Imitation update rule with parent-preferred and offspring-

preferred dispersal

Initially, each player is designated to play either C or D, and occupies one site of the
network. At each time step, each player x engages in pairwise interactions with all its
adjacent neighbours, and then collects its payoff P, based on the payoff matrix
parameters. Furthermore, player x obtains its fitness associated with the payoff
information, given as
fe =e",

where w is the intensity of selection.

After playing the games, a random individual x is chosen to evaluate its
strategy. It will either stay with its own strategy or imitate a neighbour’s strategy. The
probability that each neighbour y enforces its strategy to individual x is defined as

8
fey-01y (o)
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dyy =

where the sum in the denominator is over all the neighbours of individual y (., is the
set of neighbours of individual y including individual y), f,, ) denotes the expected

fitness of individual z when the individual y enforces its strategy to individual z

successfully, and f, , -, denotes the expected fitness of individual y when individual

y enforces its strategy to individual z successfully. Here, @ (@ > 0) represents the
offspring-preferred dispersal strength, S (8 > 0) represents the parent-preferred

dispersal strength, and d,,(,y characterizes the desirability strength of individual y to

y(x
enforce its strategy to individual x.

Based on the neighbour’s desirability strength, the probability that the



neighbour y can enforce its strategy to individual X is

p—_bwh
yex ZiEQX di(x)fi’

where the sum in the denominator is over all the neighbours of x (£, is the set of
neighbours of individual x including individual x itself), f; denotes the obtained
fitness of individual i from the interactions with its current neighbours. Here,

d;ix) X f; represents the competition strength of individual i to enforce its strategy to

individual x. And when @ = 0 and 8 = 0, this rule recovers the original imitation

update rule [2].

5. Pairwise comparison update rule with parent-preferred and

offspring-preferred dispersal

Initially, each player is designated to play either C or D, and occupies one site of the
network. At each time step, each player x engages in pairwise interactions with all its
adjacent neighbours, and then collects its payoff P, based on the payoff matrix
parameters. Furthermore, player x obtains its fitness associated with the payoff
information, given as
fe =e",

where w is the intensity of selection.

After playing the games, a random individual x is chosen to evaluate its
strategy, and one of the neighbours y is chosen to teach individual x proportion to the

neighbour’s desirability. Here, we define neighbour y’s desirability as

a B
fx(y—”f) y(y—x)
a B !
Lzea, fr-nfy -0

y(x) =

where the sum in the denominator is over all the neighbours of individual y (2, is the
set of neighbours of individual y), f,(, - denotes the expected fitness of individual z
when individual y enforces its strategy to individual z successfully, and f,, -
denotes the expected fitness of individual y when individual y enforces its strategy to
individual z successfully. Here, a (a > 0) represents the offspring-preferred dispersal
strength, and B (B > 0) represents the parent-preferred dispersal strength.

After the neighbour y is chosen, player x adopts individual y ’s strategy with a

probability depending on the fitness difference as



1
Bx= )
T 1+ exp(fy — £,)/x]
where k is the uncertainty by strategy adoptions. Without losing generality, we set

k = 1.0 in this study. And when @ = 0 and 8 = 0, this rule recovers the original

pairwise comparison update rule [2].

6. Results for the three other update rules with parent-preferred and

offspring-preferred dispersal

In figure S2, we report how the fraction of cooperators depends on the offspring-
preferred dispersal strength a and the parent-preferred dispersal strength g for three
other update rules (death-birth, imitation, and pairwise comparison update rules),
when parent-preferred and offspring-preferred dispersal modes are considered. We
still find that under these three different update rules the parent-preferred dispersal
way can promote the evolution of cooperation in different types of population
structures, and in scale-free networks cooperation can be enhanced for intermediate
offspring-preferred dispersal strength when the parent-preferred dispersal strength is
not high. These results show that our main results about effects of parent-preferred
and offspring-preferred dispersal are robust against the considered changes of the

update rules.
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Figure S2: Impact of the strengths of parent-preferred and offspring-preferred
dispersal on the fraction of cooperators for different update rules and population
structures. Top row depicts the fraction of cooperators depending on offspring-
preferred dispersal strength @ and parent-preferred dispersal strength g in a contour
plot form under death-birth update rule in random-regular (a), small-world (b), and
scale-free (c) networks, respectively. Middle row depicts the fraction of cooperators
depending on offspring-preferred dispersal strength a and parent-preferred dispersal
strength B in a contour plot form under imitation rule in random-regular (d), small-
world (e), and scale-free (f) networks, respectively. Bottom row depicts the fraction of
cooperators depending on offspring-preferred dispersal strength o and parent-
preferred dispersal strength £ in a contour plot form under pairwise comparison rule
in random-regular (g), small-world (h), and scale-free (i) networks, respectively. Here,
w = 0.01 and b/c = 4. Initially each individual is designated either as a cooperator
or a defector with equal probability, and under the pairwise comparison update rule
K = 1.0.
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