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1. Results for the original birth-death rule 

In figure S1, we report the fraction of cooperators as a function of the benefit-to-cost 

ratio 𝑏/𝑐 in the three different types of population structures under the birth-death 

rule with random dispersal mode under which the offspring replaces a random 

neighbour of the parent. We observe that under the original birth-death rule, 

cooperators cannot survive in random-regular and small-world networks, even if the 

benefit-to-cost is high. Furthermore, in scale-free networks just a few cooperators 

survive when the benefit-to-cost ratio is high. These results show that the original 

birth-death rule greatly suppresses the evolution of cooperation in social networks [1], 

even if initially half of the nodes are occupied by cooperators and the benefit-to-cost 

ratio is high. 

Figure S1: Fraction of cooperators as a function of the benefit-to-cost ratio 𝑏/𝑐 

without offspring-preferred or parent-preferred dispersal, that is, 𝛼 = 𝛽 = 0. Under 



the birth-death update rule with random dispersal mode, it is extremely difficult for 

cooperation to evolve in different types of population structures. However, for large 

benefit-to-cost ratio just a few cooperators can survive in scale-free networks. Here, 

the intensity of selection 𝑤 is fixed at 0.01 and initially each individual is designated 

either as a cooperator or a defector with equal probability. 

2. Pair-approximation method for birth-death rule with parent-

preferred and offspring-preferred dispersal 

By assuming that cooperators are distributed uniformly among the network, we can 

use the pair-approximation method to theoretically study the evolutionary dynamics 

of cooperation on regular graphs [1]. Let 𝑝𝐶  and 𝑝𝐷 respectively denote the fractions 

of cooperators and defectors in the population, so that  𝑝𝐶 + 𝑝𝐷 = 1. Let 𝑝𝐶𝐶 , 𝑝𝐶𝐷 , 

𝑝𝐷𝐶 , and 𝑝𝐷𝐷  respectively denote the factions of 𝐶𝐶, 𝐶𝐷, 𝐷𝐶, and 𝐷𝐷 links. We have 

𝑝𝐶𝐶 + 𝑝𝐶𝐷 + 𝑝𝐷𝐶 + 𝑝𝐷𝐷 = 1  and 𝑝𝐶𝐷 = 𝑝𝐷𝐶 . Let 𝑞𝑋|𝑌  denote the conditional 

probability to find an 𝑋-player given that the adjacent node is occupied by a 𝑌-player. 

Here, both 𝑋 and 𝑌 stand for 𝐶 or 𝐷. Then we have 𝑝𝑋𝑌 = 𝑞𝑋|𝑌𝑝𝑌 and 𝑞𝐶|𝑋 + 𝑞𝐷|𝑋 =

1 . As a result, based on the relationships of the quantities, we can see that the 

dynamics of the system can be described by only two quantities, 𝑝𝐶  and 𝑝𝐶𝐶 . 

Now, let us consider the probability that a player is selected for reproduction 

in a regular graph with the number of neighbours 𝑘. We know that the fitness of a 

cooperator who has 𝑘𝐶  cooperative neighbours and 𝑘𝐷 = 𝑘 − 𝑘𝐶  defective neighbours 

is 𝑓𝐶 = 𝑒𝑤(𝑘𝐶𝑀11 +𝑘𝐷𝑀12 ), and hence the probability that such cooperators are selected 

for reproduction is proportional to 

 𝐴 = 𝑝𝐶  
𝑘
𝑘𝐶
 𝑞𝐶|𝐶

𝑘𝐶 𝑞𝐷|𝐶
𝑘𝐷 𝑓𝐶 . (1) 

Similarly, the fitness of a defector who has 𝑘𝐶  cooperative neighbours and 𝑘𝐷  

defective neighbours is 𝑓𝐷 = 𝑒𝑤(𝑘𝐶𝑀21 +𝑘𝐷𝑀22 ) , and hence the probability that such 

defectors are selected for reproduction is proportional to 

 𝐵 = 𝑝𝐷  
𝑘
𝑘𝐶
 𝑞𝐶|𝐷

𝑘𝐶 𝑞𝐷|𝐷
𝑘𝐷 𝑓𝐷 . (2) 

Next, we consider the probability that a player’s offspring chooses a neighbour 

to replace. During the replacment process, the parent can explore the expected fitness 

in four different situations. In the first situation when a cooperator’s offspring 



replaces a cooperative neighbour we have 

𝑓𝑃(𝐶→𝐶) = 𝑒𝑤(𝑘𝐶𝑀11 +𝑘𝐷𝑀12 ), 

and  

𝑓𝑂(𝐶→𝐶) = 𝑒𝑤[𝑀11 +(𝑘−1)𝑞𝐶|𝐶𝑀11 +(𝑘−1)𝑞𝐷|𝐶𝑀12 ], 

respectively representing the expected fitness of the cooperative parent and its 

offspring. 

In the second situation when a cooperator’s offspring replaces a defective 

neighbour, we have 

𝑓𝑃(𝐶→𝐷) = 𝑒𝑤[(𝑘𝐶+1)𝑀11 +(𝑘𝐷−1)𝑀12 ], 

and  

𝑓𝑂(𝐶→𝐷) = 𝑒𝑤[𝑀11 +(𝑘−1)𝑞𝐶|𝐷𝑀11 +(𝑘−1)𝑞𝐷|𝐷𝑀12 ], 

respectively represent the expected fitness of the cooperative parent and its offspring. 

In the third situation when a defector’s offspring replaces a cooperative 

neighbour, we have 

 

 𝑓𝑃(𝐷→𝐶) = 𝑒𝑤  𝑘𝐶−1 𝑀21 + 𝑘𝐷+1 𝑀22  , 

 

and 

𝑓𝑂(𝐷→𝐶) = 𝑒𝑤[(𝑘−1)𝑞𝐶|𝐶𝑀21 +(𝑘−1)𝑞𝐷|𝐶𝑀22 +𝑀22 ], 

respectively represent the expected fitness of the defective parent and its offspring. 

In the fourth situation when a defector’s offspring replaces a defective 

neighbour, we have 

𝑓𝑃(𝐷→𝐷) = 𝑒𝑤(𝑘𝐶𝑀21 +𝑘𝐷𝑀22 ), 

and  

𝑓𝑂(𝐷→𝐷) = 𝑒𝑤[(𝑘−1)𝑞𝐶|𝐷𝑀21 +(𝑘−1)𝑞𝐷|𝐷𝑀22 +𝑀22 ], 

respectively represent the expected fitness of the defective parent and its offspring. 

Based on the information from the four different situations, the probability that 

a cooperator’s offspring chooses to replace a defective neighbour is given by 

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽
+ 𝑘𝐶𝑓𝑂(𝐶→𝐶)

𝛼 𝑓𝑃(𝐶→𝐶)
𝛽

. 

As a result, 𝑝𝐶  increases by 1/𝑁 with probability 



Prob(△ 𝑝𝐶 =
1

𝑁
) =  𝐴

𝑘𝐶+𝑘𝐷=𝑘

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽
+ 𝑘𝐶𝑓𝑂(𝐶→𝐶)

𝛼 𝑓𝑃(𝐶→𝐶)
𝛽

. 

Correspondingly, the number of 𝐶𝐶  pairs increases by 1 + 𝑞𝐶|𝐷(𝑘 − 1)  and 𝑝𝐶𝐶  

increases by 2[1 + 𝑞𝐶|𝐷(𝑘 − 1)]/(𝑘𝑁) with probability 

Prob(△ 𝑝𝐶𝐶 =
2[1 + 𝑞𝐶|𝐷(𝑘 − 1)]

𝑘𝑁
) = 𝐴

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽
+ 𝑘𝐶𝑓𝑂(𝐶→𝐶)

𝛼 𝑓𝑃(𝐶→𝐶)
𝛽

. 

Similarly, the probability that a defector’s offspring chooses to replace a cooperative 

neighbour is given by 

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽
+ 𝑘𝐷𝑓𝑂(𝐷→𝐷)

𝛼 𝑓𝑃(𝐷→𝐷)
𝛽

. 

As a result, 𝑝𝐶  decreases by 1/𝑁 with probability 

Prob △ 𝑝𝐶 = −
1

𝑁
 =  𝐵

𝑘𝐶+𝑘𝐷=𝑘

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽
+ 𝑘𝐷𝑓𝑂(𝐷→𝐷)

𝛼 𝑓𝑃(𝐷→𝐷)
𝛽

. 

Correspondingly, the number of 𝐶𝐶 pairs decreases by (𝑘 − 1)𝑞𝐶|𝐶  and 𝑝𝐶𝐶  decreases 

by 2(𝑘 − 1)𝑞𝐶|𝐶/(𝑘𝑁) with probability 

Prob △ 𝑝𝐶𝐶 = −
2 𝑘 − 1 𝑞𝐶|𝐶

𝑘𝑁
 = 𝐵

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽
+ 𝑘𝐷𝑓𝑂(𝐷→𝐷)

𝛼 𝑓𝑃(𝐷→𝐷)
𝛽

. 

Combining the two probability calculations above, we have 

𝑝 𝐶 =
1

𝑁
⋅ Prob  △ 𝑝𝐶 =

1

𝑁
 −

1

𝑁
⋅ Prob  △ 𝑝𝐶 = −

1

𝑁
  

=
1

𝑁
 𝐴

𝑘

𝑘𝐶=0

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽
+ 𝑘𝐶𝑓𝑂(𝐶→𝐶)

𝛼 𝑓𝑃(𝐶→𝐶)
𝛽

 

 −
1

𝑁
 𝐵

𝑘

𝑘𝐶=0

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽
+ 𝑘𝐷𝑓𝑂(𝐷→𝐷)

𝛼 𝑓𝑃(𝐷→𝐷)
𝛽

, (3) 

and 

𝑝 𝐶𝐶 =  
2[1 + 𝑞𝐶|𝐷(𝑘 − 1)]

𝑘𝑁
𝑘𝐶+𝑘𝐷=𝑘

Prob(△ 𝑝𝐶𝐶 =
2[1 + 𝑞𝐶|𝐷(𝑘 − 1)]

𝑘𝑁
) 

−  
2(𝑘 − 1)𝑞𝐶|𝐶

𝑘𝑁
𝑘𝐶+𝑘𝐷=𝑘

Prob(△ 𝑝𝐶𝐶 = −
2(𝑘 − 1)𝑞𝐶|𝐶

𝑘𝑁
) 



=  
2[1 + 𝑞𝐶|𝐷(𝑘 − 1)]

𝑘𝑁

𝑘

𝑘𝐶=0

𝐴
𝑘𝐷𝑓𝑂(𝐶→𝐷)

𝛼 𝑓𝑃(𝐶→𝐷)
𝛽

𝑘𝐷𝑓𝑂(𝐶→𝐷)
𝛼 𝑓𝑃(𝐶→𝐷)

𝛽
+ 𝑘𝐶𝑓𝑂(𝐶→𝐶)

𝛼 𝑓𝑃(𝐶→𝐶)
𝛽

 

 −  
2(𝑘 − 1)𝑞𝐶|𝐶

𝑘𝑁

𝑘

𝑘𝐶=0

𝐵
𝑘𝐶𝑓𝑂(𝐷→𝐶)

𝛼 𝑓𝑃(𝐷→𝐶)
𝛽

𝑘𝐶𝑓𝑂(𝐷→𝐶)
𝛼 𝑓𝑃(𝐷→𝐶)

𝛽
+ 𝑘𝐷𝑓𝑂(𝐷→𝐷)

𝛼 𝑓𝑃(𝐷→𝐷)
𝛽

. (4) 

After the variable substitution, we use numerical integration to solve the two 

differential equations above for 𝑝𝐶 . Figure 2 shows the cooperation level depending 

on offspring-preferred dispersal strength 𝛼 and parent-preferred dispersal strength 𝛽 

as predicted by this pair-approximation method. 

3. Death-birth update rule with parent-preferred and offspring-

preferred dispersal 

Initially, each player 𝑥 is designated to play either 𝐶 or 𝐷, and occupies one site of the 

network. At each time step, each player x engages in pairwise interactions with all its 

adjacent neighbours, and then collects its payoff  𝑃𝑥 based on the payoff matrix 

parameters. Furthermore, player x obtains its fitness associated with the payoff 

information, given as 

𝑓𝑥 = 𝑒𝑤𝑃𝑥 , 

where w is the intensity of selection. 

After playing the games, a random individual x is chosen to die, and 

subsequently the neighbours compete for the empty site. The probability that each 

neighbour y competes for the empty site is defined as 

𝑑𝑦(𝑥) =
𝑓𝑥(𝑦→𝑥)
𝛼 𝑓𝑦(𝑦→𝑥)

𝛽

 𝑓𝑧(𝑦→𝑧)
𝛼 𝑓𝑦(𝑦→𝑧)

𝛽
𝑧∈Ω𝑦

, 

where the sum in the denominator is over all the neighbours of y (Ω𝑦  is the set of 

neighbours of individual y), 𝑓𝑧(𝑦→𝑧) denotes the expected fitness of individual z when 

the offspring of individual y occupies the site of neighbour z, and 𝑓𝑦(𝑦→𝑧) denotes the 

expected fitness of individual y when the offspring of individual y occupies the site of 

neighbour z. Here, 𝛼 (𝛼 > 0)  represents the offspring-preferred dispersal strength, 

𝛽 (𝛽 > 0) represents the parent-preferred dispersal strength, and 𝑑𝑦(𝑥) characterizes 

the desirability strength of the offspring of individual y to move into the site of 

individual x. 

Based on the neighbour’s desirability strength, the probability that individual y 



can occupy the site of individual x is 

𝑃𝑦→𝑥 =
𝑑𝑦(𝑥)𝑓𝑦

 𝑑𝑖(𝑥)𝑓𝑖𝑖∈Ω𝑥

 , 

where the sum in the denominator is over all the neighbours of x (Ω𝑥  is the set of 

neighbours of individual x), and 𝑓𝑖  denotes the obtained fitness of individual 𝑖 from 

the interactions with its current neighbours. Here, 𝑑𝑖(𝑥) × 𝑓𝑖  represents the 

competition strength of individual 𝑖 for the site of individual x. And when 𝛼 = 0 and 

𝛽 = 0, this rule recovers the original death-birth update rule [2]. 

4. Imitation update rule with parent-preferred and offspring-

preferred dispersal 

Initially, each player is designated to play either 𝐶 or 𝐷, and occupies one site of the 

network. At each time step, each player x engages in pairwise interactions with all its 

adjacent neighbours, and then collects its payoff 𝑃𝑥  based on the payoff matrix 

parameters. Furthermore, player x obtains its fitness associated with the payoff 

information, given as 

𝑓𝑥 = 𝑒𝑤𝑃𝑥 , 

where w is the intensity of selection. 

After playing the games, a random individual x is chosen to evaluate its 

strategy. It will either stay with its own strategy or imitate a neighbour’s strategy. The 

probability that each neighbour y enforces its strategy to individual x is defined as 

𝑑𝑦(𝑥) =
𝑓𝑥(𝑦→𝑥)
𝛼 𝑓𝑦(𝑦→𝑥)

𝛽

 𝑓𝑧(𝑦→𝑧)
𝛼 𝑓𝑦(𝑦→𝑧)

𝛽
𝑧∈Ω𝑦

 , 

where the sum in the denominator is over all the neighbours of individual y (Ω𝑦  is the 

set of neighbours of individual y including individual y), 𝑓𝑧(𝑦→𝑧) denotes the expected 

fitness of individual z when the individual y enforces its strategy to individual z 

successfully, and 𝑓𝑦(𝑦→𝑧) denotes the expected fitness of individual y when individual 

y enforces its strategy to individual z successfully. Here, 𝛼 (𝛼 > 0) represents the 

offspring-preferred dispersal strength, 𝛽 (𝛽 > 0)  represents the parent-preferred 

dispersal strength, and 𝑑𝑦(𝑥) characterizes the desirability strength of individual y to 

enforce its strategy to individual x. 

Based on the neighbour’s desirability strength, the probability that the 



neighbour y can enforce its strategy to individual x is 

𝑃𝑦→𝑥 =
𝑑𝑦(𝑥)𝑓𝑦

 𝑑𝑖(𝑥)𝑓𝑖𝑖∈Ω𝑥

, 

where the sum in the denominator is over all the neighbours of x (Ω𝑥  is the set of 

neighbours of individual x including individual x itself), 𝑓𝑖  denotes the obtained 

fitness of individual 𝑖  from the interactions with its current neighbours. Here, 

𝑑𝑖(𝑥) × 𝑓𝑖  represents the competition strength of individual 𝑖 to enforce its strategy to 

individual x. And when 𝛼 = 0 and 𝛽 = 0, this rule recovers the original imitation 

update rule [2]. 

5. Pairwise comparison update rule with parent-preferred and 

offspring-preferred dispersal 

Initially, each player is designated to play either 𝐶 or 𝐷, and occupies one site of the 

network. At each time step, each player x engages in pairwise interactions with all its 

adjacent neighbours, and then collects its payoff 𝑃𝑥  based on the payoff matrix 

parameters. Furthermore, player x obtains its fitness associated with the payoff 

information, given as 

𝑓𝑥 = 𝑒𝑤𝑃𝑥 , 

where w is the intensity of selection. 

After playing the games, a random individual x is chosen to evaluate its 

strategy, and one of the neighbours y is chosen to teach individual 𝑥 proportion to the 

neighbour’s desirability. Here, we define neighbour 𝑦’s desirability as 

𝑑𝑦(𝑥) =
𝑓𝑥(𝑦→𝑥)
𝛼 𝑓𝑦(𝑦→𝑥)

𝛽

 𝑓𝑧(𝑦→𝑧)
𝛼 𝑓𝑦(𝑦→𝑧)

𝛽
𝑧∈Ω𝑦

 , 

where the sum in the denominator is over all the neighbours of individual y (Ω𝑦  is the 

set of neighbours of individual y), 𝑓𝑧(𝑦→𝑧) denotes the expected fitness of individual z 

when individual y enforces its strategy to individual z successfully, and 𝑓𝑦(𝑦→𝑧) 

denotes the expected fitness of individual y when individual y enforces its strategy to 

individual z successfully. Here, 𝛼 (𝛼 > 0) represents the offspring-preferred dispersal 

strength, and 𝛽 (𝛽 > 0) represents the parent-preferred dispersal strength. 

After the neighbour 𝑦 is chosen, player 𝑥 adopts individual 𝑦 ’s strategy with a 

probability depending on the fitness difference as 



𝑃𝑦→𝑥 =
1

1 + exp[(𝑓𝑥 − 𝑓𝑦)/𝜅]
 , 

where 𝜅 is the uncertainty by strategy adoptions. Without losing generality, we set 

𝜅 = 1.0 in this study. And when 𝛼 = 0 and 𝛽 = 0, this rule recovers the original 

pairwise comparison update rule [2]. 

6. Results for the three other update rules with parent-preferred and 

offspring-preferred dispersal 

In figure S2, we report how the fraction of cooperators depends on the offspring-

preferred dispersal strength 𝛼 and the parent-preferred dispersal strength 𝛽 for three 

other update rules (death-birth, imitation, and pairwise comparison update rules), 

when parent-preferred and offspring-preferred dispersal modes are considered. We 

still find that under these three different update rules the parent-preferred dispersal 

way can promote the evolution of cooperation in different types of population 

structures, and in scale-free networks cooperation can be enhanced for intermediate 

offspring-preferred dispersal strength when the parent-preferred dispersal strength is 

not high. These results show that our main results about effects of parent-preferred 

and offspring-preferred dispersal are robust against the considered changes of the 

update rules. 



 

Figure S2: Impact of the strengths of parent-preferred and offspring-preferred 

dispersal on the fraction of cooperators for different update rules and population 

structures. Top row depicts the fraction of cooperators depending on offspring-

preferred dispersal strength 𝛼 and parent-preferred dispersal strength 𝛽 in a contour 

plot form under death-birth update rule in random-regular (a), small-world (b), and 

scale-free (c) networks, respectively. Middle row depicts the fraction of cooperators 

depending on offspring-preferred dispersal strength 𝛼 and parent-preferred dispersal 

strength 𝛽 in a contour plot form under imitation rule in random-regular (d), small-

world (e), and scale-free (f) networks, respectively. Bottom row depicts the fraction of 

cooperators depending on offspring-preferred dispersal strength α and parent-

preferred dispersal strength β in a contour plot form under pairwise comparison rule 

in random-regular (g), small-world (h), and scale-free (i) networks, respectively. Here, 

𝑤 = 0.01 and 𝑏/𝑐 = 4. Initially each individual is designated either as a cooperator 

or a defector with equal probability, and under the pairwise comparison update rule 

𝜅 = 1.0. 
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