ESM 1: details of behaviour classification methods

For each 60-second GPS burst, we first inspected the data visually on 3D maps proposed by the Google Earth program. The high accuracy and high resolution of the burst datasets made it easy to detect, with the naked eye, any circling and ascending behaviour (indicating thermal soaring). For a more formal and systematic behavioural state assignation, we then used the sensor analysis software Framework4, available from http://www.framework4.co.uk [1]. From the groundspeed variable, we identified flight vs perched behaviour. From the height above mean-sea-level, we identified ascending flight, level flight, or descending flight. From the 3-axis accelerometer data, we identified flapping bouts (strong oscillations in vertical z-axis), gliding bouts (smooth in vertical z-axis), and perched bouts (no movement detected on any axis) (Fig. 1). The full detail of this procedure is provided by Williams et al [2]. From the 3-axis magnetometer data, we identified linear movement (no change in any axis), and circling movement (strong oscillations in the horizontal plane indicating that heading took all directions on a 360° trigonometric circle) [3] (Fig. 1). 

We then further simplified the output of the above procedure, by manually annotating all the segments of each track with just one of 5 behavioural classes: perched, (linear) flapping, (linear) gliding, (thermal) soaring-gliding (i.e. soaring in circles without flapping wings), (thermal) soaring-flapping (i.e. soaring in circles with flapping wings). Each behaviour annotated by Framework was visually cross-checked with Q-GIS v.2.18. There were never more than 2 behaviour per segment. For the sake on simplicity in the subsequent analyses, we annotated only one behaviour for each segment, taking the behaviour that lasted longer (>30 s) as reference (e.g. of the 60 s segment was composed 20 s of glide and 40 s of soaring-flapping, we retained the second behaviour). Only in case of segment encompassing perched and flight behaviour we split the segment in two parts and did not considered the segment in the analyses. 

For each segment, we also calculated the average flight height by subtracting the altitude recorded by the logger and the ground or sea altitude given by a reference Digital Elevation Model (ASTER DEM, 1 arc-second spatial resolution) obtained via the Movebank Env-DATA track annotation service [4]. We calculated the climb rate as the difference between the maximal and minimal heights above sea level of the segment. 

ESM 2: details of environmental covariates analyses

We used remote-sensed sea-surface temperature data for the Mediterranean Sea, generated daily at a 0.02° resolution, from http://cersat.ifremer.fr/thematic-portals/projects/medspiration. We choose these data, rather than the global forecasts that are available via the Movebank Env-DATA service, because their spatial resolution was much finer. We also downloaded forecasted air temperatures for the 2 m layer above the sea from http://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/ [5]. These forecasts are generated from a global network of weather stations, four times daily at a 0.5° resolution.

We regressed the rate of thermal soaring against the difference between sea surface and air temperatures ([image: image2.png]AT



) in a binomial linear model. We allowed the relationship to adopt a piecewise shape by successively fitting models with incremental 0.2°C increases in threshold value, thereby obtaining the maximum-likelihood threshold value and its model-averaged confidence interval. We also compared the fit of models without threshold or without effect of ΔT. 
As a side note, we could not apply the same approach to study the link between wind and the frequency of thermal soaring because of major inconsistencies between different datasets of wind speed and direction. At many instances, the true wind direction evidenced by obvious wind drift in thermals (as shown in fig 1 and ESM 3) did not match with the wind direction forecasted by large-scale maps of wind directions and strength by ECMWF and interpolated by Movebank Env-Data. Therefore it was not possible to estimate reliable wind assistance in the Mediterranean sea context (perhaps because winds change direction very quickly, typically within an hour while weather maps provide wind estimates for 6-h time windows). In addition, although we could have estimate wind speed and direction using bird drift in thermals [6], such estimate was not possible for migration bouts where birds were only using linear flapping flight.

ESM 3: effects of strong winds on thermal soaring behaviour.

Two extracts of GPS-burst segments of 60 seconds (separated by 5 min intervals without recording) of the flight of bird D. On the top panel, on 22 Aug 2018 in the morning, under moderate tailwind, the bird traveling south first performs a flapping bout (in red) and then a soaring-flapping bout (in yellow) with regular circles. This sequence was repeated several times during the monitored time period. In the bottom panel, on 23 Aug 2018 at night, under strong crosswind, the bird traveling south alternates between soaring-gliding bouts (in green) with distorted circles, and gliding bouts (in blue). This suggests that crosswinds either suppressed the benefit of flapping while in thermal, or could be used by the bird to increase its uplift thereby making flapping unnecessary.
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