
Supplementary Information

S.1 The Model

We recapitulate briefly the derivation of equation (2) to explain the notation and to clarify the assumptions
that go into that derivation. For ease of comparison, we follow the nomenclature of Frank and Slatkin. The
mean reproductive success of alleles A1 and A2, and of the population as a whole can be written as

R1 =
1

Nq1

Nq1∑
i=1

(µ1 + α1i) = µ1 + α1

R2 =
1

Nq2

Nq2∑
i=1

(µ2 + α2i) = µ2 + α2

R = q1R1 + q2R2 .

(S1)

Here, µk are the expected mean reproduction for allele k, αki are the deviation of the reproductive success of
ith individual carrying allele k from this mean, and αk ≡ Mean[αki] represent the mean deviation of the
realized reproductive success from the expectation for allele k.

The frequency q′1 of the A1 allele in the next generation is given by q′1 = q1R1/R. The expected change in

the frequency of the A1 allele, is simply E[∆q1] = E[q′1] − q1. Substituting the relations from equations (S1) 
and using q1 + q2 = 1, we have

E[∆q1] = E

[
q1q2[(µ1 + α1)− (µ2 + α2)]

q1(µ1 + α1) + q2(µ2 + α2)

]
. (S2)

Without loss of generality, Frank and Slatkin set q1µ1 + q2µ2 = 1, which corresponds to rescaling the µ and
α by the expected reproductive success of the population. Equation (S2) then reduces to

E[∆q1] = q1q2E

[
(µ1 + α1)− (µ2 + α2)

1 + q1 α1 + q2 α2

]
. (S3)

The trouble in evaluating equation (S3) comes from the fact that there is not a general solution for the
expectation of a ratio. However, provided that the overall stochastic fluctuation in reproductive output is
small relative to the total population size (∆N � N , or equivalently, q1α1 + q2α2 � 1), we can approximate
it as

E[∆q1] = q1q2E
[
(µ1 − µ2 + α1 − α2)(1− (q1 α1 + q2 α2) + (q1 α1 + q2 α2)2)

]
+O(α3) . (S4)

One potentially confusing aspect of this derivation arises from the fact that we are considering two
different types of mean value. The first, represented by α1 and α2, is an average across individuals, but
limited to a single realization of the stochastic process undergone by the population as a whole. The second, 
represented by the expectation operator E[. . .], is a mean taken over many hypothetical realizations of the
reproductive process of the entire population. While α1 and α2 could each take on either positive or negative
values in any single realization, these quantities are defined such that E[α1] = E[α2] = 0. The higher
moments of these fluctuations are, however, not zero:

E[α2
1] = V ar[R1] = ρ1 σ

2
1

E[α2
2] = V ar[R2] = ρ2 σ

2
2

E[α1 α2] = Cov[R1, R2] = ρ12 σ1 σ2 ,

(S5)

where V ar[Rk] and Cov[R1, R2] represent the variance of Rk and the covariance of R1 with R2, respectively. 
With this in mind, we can now take the expectation of each of the terms in equation (S4). We can also

simplify notation by introducing ∆µ = µ1 − µ2. This gives

E[∆q1] = q1q2(∆µ+ q1(q1 ∆µ− 1)E[α2
1] + (q1 − q2 + 2 q1q2 ∆µ)E[α1 α2] + q2(q2 ∆µ+ 1)E[α2

2]) +O(α3) .

(S6)



To arrive at their final expression, Frank and Slatkin make the further assumption that ∆µ is small.
Equation (S4) then reduces to

E[∆µ] = q1q2(∆µ− q1E[α2
1] + (q1 − q2)E[α1 α2] + q2E[α2

2]) +O(α3, α2∆µ) . (S7)

S.2 Diploid Model

For the diploid analog of the Frank and Slatkin model, we begin with the reproductive success of the three
genotypes. For simplicity, we assume a well mixed population at Hardy-Weinberg equilibrium.

R11 =
1

Nq21

Nq21∑
i=1

(µ11 + α11i) = µ11 + α11

R12 =
1

2Nq1q2

2Nq1q2∑
i=1

(µ12 + α12i) = µ12 + α12

R22 =
1

Nq22

Nq22∑
i=1

(µ22 + α22i) = µ22 + α22 .

(S8)

From this, we can calculate the reproductive success of the two alleles:

R1 = q1 (µ11 + α11) + q2 (µ12 + 2α12·1)

R2 = q2 (µ22 + α22) + q1 (µ12 + 2α12·2)

R = q1R1 + q2R2 .

(S9)

Note that in these expressions , we have split the α12 term into two components. In the previous expression, 
α12 represents the deviation of the number of offspring from the mean for R12 individuals. Assuming fair
segregation, we the expected number of those offspring to carry the A1 an A2 alleles will be equal α12·1
represents the excess number of offspring to inherit an A1 allele from an R12 parent (and α12·2 the excess
inheriting A2). The quantity µ12/2 + α12·1 is distributed as a binomial B(µ12 + α12, 1/2), and
α12·2 = α12 − α12·1.

Now we can write our expression for the expected change in allele frequency

E[∆q1] = q1q2E

[
q1(µ11 + α11) + q2(µ12 + 2α12·1)− q1(µ12 + 2α12·2)− q2(µ22 + α22)

1 + q21 α11 + 2q1q2 α12 + q22 α22

]
(S10)

where we have again normalized by the total expected reproductive output by setting
q21 µ11 + 2q1q2 µ12 + q22 µ22 = 1. As in the haploid case, we assume that the fluctuation ∆N is small
compared with the total population size N . This allows us to approximate this ratio as

E[∆q1] ≈ q1q2
[
q1(µ11 − µ12) + q2(µ12 − µ22)

−q31E[α2
11] + q32E[α2

22]− 4q1q
2
2 E[α12·1 α12] + 4q21q2E[α12·2 α12]

] (S11)

We again assume that the reproductive success of different individuals is uncorrelated, and we additionally
assume that the population is at Hardy-Weinberg equilibrium. In this case, the non-zero variance and
covariance terms are

E[α2
11] = V ar[R11] = ρ11 σ

2
11 =

σ2
11

Nq21

E[α2
22] = V ar[R22] = ρ22 σ

2
22 =

σ2
22

Nq22

E[α12·1 α12] = E[α12·2 α12] =
1

2

σ2
12

2Nq1q2

(S12)



The approximation for the change in allele frequency then reduces to

E[∆q1] ≈ q1q2
[
q1

(
µ11 −

σ2
11

N
− µ12 +

σ2
12

N

)
+ q2

(
µ12 −

σ2
12

N
− µ22 +

σ2
22

N

)]
(S13)

Note that, as in the haploid analysis, if we define the effective fitness of a genotype as we = µ− σ2/N , this
reduces to the standard formula. Furthermore, if allelic effects on reproductive mean and variance are
additive, it reduces to the haploid equation.

S.3 Genomic Imprinting

Treatment of the general diploid case with genomic imprinting requires the addition of the fact that the two
heterozogous genotypes may have different phenotypes. To accommodate this, we modify our notation such
that two-number subscripts are ordered, with the first number indicating the identity of the maternally
inherited allele and the second number indicating the identity of the paternally inherited allele. For example
µ12 now represents the mean reproductive success of heterozogous individuals whose A1 allele was maternally
inherited and whose A2 allele was paternally inherited.

We now have four expressions for the mean reproductive output in a given generation:

R11 =
1

Nq21

Nq21∑
i=1

(µ11 + α11i) = µ11 + α11

R12 =
1

Nq1q2

2Nq1q2∑
i=1

(µ12 + α12i) = µ12 + α12

R21 =
1

Nq1q2

2Nq1q2∑
i=1

(µ21 + α21i) = µ21 + α21

R22 =
1

Nq22

Nq22∑
i=1

(µ22 + α22i) = µ22 + α22 .

(S14)

The corresponding expressions for the reproductive output of the two alleles are

R1 = q1(µ11 + α11) + q2

(µ12

2
+ α12·1 +

µ21

2
+ α21·1

)
R2 = q2(µ22 + α22) + q1

(µ12

2
+ α12·2 +

µ21

2
+ α21·2

)
R = q1R1 + q2R2 .

(S15)

Once again, we assume that the fluctuations in total reproductive output are small compared with the
population size, and that individual reproductive outputs are uncorrelated. The expected change in allele
frequency then becomes

E[∆q1] ≈ q1q2
[
q1

(
µ11 −

σ2
11

N
− µ12

2
+
σ2
12

2N
− µ21

2
+
σ2
21

2N

)
+ q2

(
µ12

2
− σ2

12

2N
+
µ21

2
− σ2

21

2N
− µ22 +

σ2
22

N

)]
(S16)

The result is virtually identical to what we found in the diploid case (without imprinting), with the mean
and variance of the heterozygotes’ reproductive output being replaced by the averages of the means and
variances of the two different heterozygotes. That is, we once again recover the standard expression for the
change in allele frequency if we define effective fitnesses as w11 = µ11 − σ2

11/N , w22 = µ22 − σ2
22/N , and

w12 = (µ12 + µ21)/2− (σ2
12 + σ2

21)/(2N).
Often, genomic imprinting involves the transcriptional silencing of one of the two alleles, such that the

phenotype of the individual depends only on the maternally inherited (or paternally inherited) allele. For
example, if we were considering an imprinted locus with expression only from the maternally inherited allele, 



we would only need to consider two values of reproductive mean and variance: µ1∗, µ2∗, σ
2
1∗, and σ2

2∗, where
∗ indicates either allele. Equation (S16) then reduces to

E[∆q1] ≈ q1q2
2

(
µ1∗ −

σ2
1∗
N
− µ2∗ +

σ2
2∗
N

)
, (S17)

which is identical to the haploid result, except that the expected change in allele frequency is reduced by a
factor of two.

Two Sexes

We now consider the case where our diploid model has two sexes, in which the same genotype may be
associated with different means and variances of reproductive success. To indicate the two sexes, we will
include an additional subscript of F or M to each of the variables previously introduced. As before, we start
with the mean reproductive success of each type in the population:

R11F =
1

NF q21

Nfq
2
1∑

i=1

(µ11F + α11Fi) = µ11F + α11F

R12F =
1

NF q1q2

2NF q1q2∑
i=1

(µ12F + α12Fi) = µ12F + α12F

R21F =
1

NF q1q2

2NF q1q2∑
i=1

(µ21F + α21Fi) = µ21F + α21F

R22F =
1

NF q22

NF q22∑
i=1

(µ22F + α22Fi) = µ22F + α22F

R11M =
1

NMq21

NMq21∑
i=1

(µ11M + α11Mi) = µ11M + α11M

R12M =
1

NMq1q2

2NMq1q2∑
i=1

(µ12M + α12Mi) = µ12M + α12M

R21M =
1

NMq1q2

2NMq1q2∑
i=1

(µ21M + α21Mi) = µ21M + α21M

R22M =
1

NMq22

NMq22∑
i=1

(µ22M + α22Mi) = µ22M + α22M .

(S18)

Because the total reproductive output of males and females in the population must be equal, the allele
frequency in the next generation will simply be the average of the frequencies of the alleles passed on by
males and females. Assuming that mating and sex determination are both independent of the genotype at
this locus, this means that we can analyze the two sexes separately. That is,

E[∆q1] =
1

2

(
R1F

RF

− q1
)

+
1

2

(
R1M

RM

− q1
)
, (S19)



where the E[∆q1]∗ terms have the same form as equation (S16). Substituting the appropriate expressions
into this equation gives us

E[∆q1] ≈ q1q2

[
q1
2

(
µ11F −

σ2
11F

NF
− µ12F

2
+
σ2
12F

2NF
− µ21F

2
+

σ2
21

2NF

+µ11M −
σ2
11M

NM
− µ12M

2
+
σ2
12M

2NM
− µ21M

2
+
σ2
21M

2NM

)

+
q2
2

(
µ12F

2
− σ2

12F

2NF
+
µ21F

2
− σ2

21F

2NF
− µ22F +

σ2
22F

NF

+
µ12M

2
− σ2

12M

2NM
+
µ21M

2
− σ2

21M

2NM
− µ22M +

σ2
22M

NM

)]
.

(S20)

Recall that our earlier analysis involved normalizing the mean and variance by the total expected
reproductive output E[R]. In this analysis, that normalization happened separately for males and females.
That is, if we want to interpret µ and σ2 as the mean and variance of the number of offspring, we would need
to make the following changes:

µ∗F →
NF µ∗F
N

µ∗M →
NM µ∗M

N

σ2
∗F →

N2
F σ

2
∗F

N2

σ2
∗M →

N2
M σ2

∗M
N2

.

(S21)

We will not make that substitution here, since the separately normalized versions of µ and σ2 correspond
more closely with our intuitive notions of relative fitness.

Our analysis will focus on the case where the sex ratio is 1:1 (NF = NM ), however, we pause to note a
few interesting features of equation (S20). First, the effective mean reproductive success of a genotype is
simply the arithmetic mean of the genotype’s relative fitness in males and females: µ∗ = (µ∗F + µ∗M )/2.
The effective reproductive variance of a genotype, by contrast, is a weighted average that depends more
heavily on the reproductive variance in the rarer sex.

σ2
∗ = N

(
σ2
∗F
NF

+
σ2
∗M
NM

)
(S22)

Note that this also means that selection will favor bet-hedging phenotypes more in the rarer sex. Given that
the benefits of variance reduction are greater in smaller population sizes, this is not surprising. In the case of
a 1:1 sex ratio, these effective mean and variance terms can be substituted to recover equation (S16).

S.4 Two-generation model

The frequency of allele A1 after two generations follows from equation (13) and is given by

q′1 =
q1(µ1a + α1a)(µ1b + α1b)

q1(µ1a + α1a)(µ1b + α1b) + q2(µ2a + α2a)(µ2b + α2b)
. (S23)

In order to simplify this expression, we introduce the following definitions:

µab = q1µ1aµ1b + q2µ2aµ2b

ξ1 = µ1aα1b + µ1bα1a + α1aα1b

ξ2 = µ2aα2b + µ2bα2a + α2aα2b .

(S24)



Substituting this notation into equation (S23) gives us an expression for the change in allele frequency after
two generations:

∆q1 = q1q2
µ1aµ1b − µ2aµ2b + ξ1 − ξ2

µab + q1ξ1 + q2ξ2
. (S25)

In this form, we can see that equation (S25) is analogous to equation (2). The expected reproductive
success of alleles A1 and A2 is µ1aµ1b and µ1aµ1b, respectively. The terms ξ1 and ξ2 are the deviations from
those mean values. We scale µab to one as before, and we assume that the difference between the means is
small (|µ1aµ1b − µ2aµ2b| � 1) and that the total stochastic deviation is small relative to the mean
(|q1ξ1 + q2ξ2| � 1). We also restrict our analysis to the case where the reproductive success of different
individuals is uncorrelated. The expected value of the change in allele frequency is then given approximately
by

E[∆q1] ≈ q1q2
(
µ1aµ1b − µ2aµ2b − q1E[ξ21 ] + q2E[ξ22 ]

)
. (S26)

Substituting the relationships from equation (S24) back in and taking the expectations, as above, yields

E[∆q1] ≈ q1q2
(
µ1aµ1b − µ2aµ2b − q1

µ2
1aσ

2
1b

q′1N
− µ2

1bσ
2
1a

N
+ q2

µ2
2aσ

2
2b

q′2N
+
µ2
2bσ

2
2a

N

)
, (S27)

where the primes denote the allele frequencies in the intermediate generation, and we have discarded terms of
order 1/N2. Recognizing the fact that q′1 ≈ µ1aq1 to the required order, this further reduces to

E[∆q1] ≈ q1q2

(
µ1aµ1b − µ2aµ2b −

µ1aσ
2
1b

N
− µ2

1bσ
2
1a

N
+
µ2aσ

2
2b

N
+
µ2
2bσ

2
2a

N

)
. (S28)

Two-Generation Bet-Hedging at an Imprinted Locus

The logic of the analysis that follows can be grasped intuitively from consideration of equation (15). If the a
terms in equation (15) represent the values in males (averaged across parental origin and genotype), then the
b terms will represent values for paternally inherited alleles (averaged across sex and genotype). Similarly, if
a represents females, b will represent maternally inherited alleles. Due to the final term in equation (15), the
benefits of increasing mean reproduction (e.g., at the expense of increased reproductive variance) decline as
the reproductive variance in the previous generation increases.

In most species, males have a higher variance of reproductive success than females. That means that in
considering the fitness trade-off between increased mean and reduced variance, alleles will receive a greater
benefit from reducing reproductive variance when paternally inherited, while alleles will receive greater
benefit from increasing the mean when maternally inherited. At an imprinted locus, where alleles exhibit two
distinct strategies based on parental origin, natural selection will favor divergent strategies, leading to the
type of intragenomic conflict and evolutionary arms race observed in other imprinted systems. At the margin, 
paternally expressed imprinted genes will favor phenotypic traits that reduce reproductive variance (at the
cost of reduced mean reproduction), while maternally expressed imprinted genes will favor traits that
increase mean reproduction (at the cost of increased reproductive variance).

We can make this intuitive analysis explicit by first defining the overall reproductive mean and variance
for an allele conditional on its being present in males or females. For allele A1 in females,

µ1F = q1 µ11F +
q2
2

(µ12F + µ21F )

σ2
1F = q1 σ

2
11F +

q2
2

(
σ2
12F + σ2

21F

)
.

(S29)

Analogous relationships hold for allele A2 and for males. We also have similar expressions for the
reproductive mean and variance conditional on parental origin. Thus, for allele A1 when maternally
inherited,

µ1∗ =
q1
2

(µ11F + µ11M ) +
q2
2

(µ12F + µ12M ) = q1 µ11 + q2 µ12

σ2
1∗ = q1

(
σ2
11F + σ2

11M

)
+ q2

(
σ2
12F + σ2

12M

)
= q1 σ

2
11 + q2 σ

2
12 .

(S30)



Again, the analogous expressions for A2 and for paternally inherited alleles are straightforward.
The two-generation effective fitness for allele A1 is simply the average of equation (15) over two sets of

alleles. The first is alleles that are present in females in generation a and are maternally inherited in
generation b. The second is alleles that are present in males in generation a and are paternally inherited in
generation b:

w1 =
1

2

(
µ1F µ1∗ + µ1M µ∗1 −

µ1F σ
2
1∗

N
− µ1M σ2

∗1
N

− µ2
1∗ σ

2
1F

N
− µ2

∗1 σ
2
1M

N

)
. (S31)

The term w2 can be similarly defined (see discussion following supplementary equation (S34) for details),
and, with these definitions, the expected change in allele frequency is E[∆q1] ≈ q1q2(w1 − w2). In order to
understand the basis of the intragenomic conflict, we compare this expectation for pairs of alleles A1 and A2

in two different contexts: an imprinted locus where only the maternally inherited allele is expressed E[∆q1]m,
and an imprinted locus where only the paternally inherited allele is expressed E[∆q1]p.

For clarity of presentation, our analysis is restricted to the case where the alleles do not have sex-specific
effects on mean reproductive success (µ1F = µ1M and µ2F = µ2M ), though it is easy to relax this
assumption. The difference in the expected allele frequency changes is then given by

E[∆q1]m − E[∆q1]p =
q1q2(µ2

1 − µ2
2)

8N

(
(1 + 2q1)(σ2

1M − σ2
1F ) + (1 + 2q2)(σ2

2M − σ2
2F )
)
. (S32)

If reproductive variance is greater for males than for females, as is typically the case, then
E[∆q1]m − E[∆q1]p will have the same sign as µ2

1 − µ2
2. That is, if µ1 > µ2, allele A1 will have a greater

advantage over allele A2 at a maternally expressed imprinted locus than at a paternally expressed one.
The result can perhaps be seen more clearly if we assume that µ2

1 − µ2
2 ≈ 2(µ1 − µ2), which follows if µ1

and µ2 are both close to 1, and we assume that the difference in male and female reproductive variances is
the same for both alleles. We then have

E[∆q1]m − E[∆q1]p =
q1q2
N

(µ1 − µ2)
(
σ2
M − σ2

F

)
, (S33)

which is our final result discussed below.

S.5 Two-Generation Model with Imprinting

Here we derive our expression for the expected change in allele frequency E[∆q1] = q1q2(w1 − w2), starting
from the two-generation effective fitness expressions provided by equation (S31) in the main text and
reproduced here:

w1 =
1

2

(
µ1F µ1∗ + µ1M µ∗1 −

µ1F σ
2
1∗

N
− µ1M σ2

∗1
N

− µ2
1∗ σ

2
1F

N
− µ2

∗1 σ
2
1M

N

)
w2 =

1

2

(
µ2F µ2∗ + µ2M µ∗2 −

µ2F σ
2
2∗

N
− µ2M σ2

∗2
N

− µ2
2∗ σ

2
2F

N
− µ2

∗2 σ
2
2M

N

) (S34)



The terms µ1F , µ1M , µ2F , and µ2M are the mean reproductive success of alleles A1 and A2 in females and
males, averaged across genotypes. The analogous σ2 terms are the corresponding reproductive variances.

µ1F = q1 µ11F +
q2
2

(µ12F + µ21F )

µ2F = q2 µ22F +
q1
2

(µ12F + µ21F )

µ1M = q1 µ11M +
q2
2

(µ12M + µ21M )

µ2M = q2 µ22M +
q1
2

(µ12M + µ21M )

σ2
1F = q1 σ

2
11F +

q2
2

(
σ2
12F + σ2

21F

)
σ2
2F = q2 σ

2
22F +

q1
2

(
σ2
12F + σ2

21F

)
σ2
1M = q1 σ

2
11M +

q2
2

(
σ2
12M + σ2

21M

)
σ2
2M = q2 σ

2
22M +

q1
2

(
σ2
12M + σ2

21M

)

(S35)

The term µ1∗ represents the mean reproductive success of maternally inherited A1 alleles, averaged across
genotypes and sexes, while µ∗1 is the mean reproductive success of paternally inherited A1 alleles. The
corresponding values for A2 are given by µ2∗ and µ∗2, and again the analogous σ2 terms are the
corresponding reproductive variances.

µ1∗ =
q1
2

(µ11F + µ11M ) +
q2
2

(µ12F + µ12M ) = q1 µ11 + q2 µ12

µ2∗ = q2 µ22 + q1 µ21

µ∗1 = q1 µ11 + q2 µ21

µ∗2 = q2 µ22 + q1 µ12

σ2
1∗ = q1

(
σ2
11F + σ2

11M

)
+ q2

(
σ2
12F + σ2

12M

)
= q1 σ

2
11 + q2 σ

2
12

σ2
2∗ = q2 σ

2
22 + q1 σ

2
21

σ2
∗1 = q1 σ

2
11 + q2 σ

2
21

σ2
∗2 = q2 σ

2
22 + q1 σ

2
12

(S36)

In order to focus our analysis specifically on imprinted gene effects, we will make the simplifying
assumption that the alleles do not have sex-specific effects on mean reproductive success (e.g.,
µ11F = µ11M = µ11.

We now separately consider two cases: an imprinted locus with maternal expression, and an imprinted
locus with paternal expression. This allows further simplification. For example, at the maternally expressed
locus, µ11 = µ12 = µ1, whereas at the paternally expressed locus, µ11 = µ21 = µ1.

Recalling that our values for µ were normalized such that the expected mean reproductive output for the
population as a whole (and for males and females separately) is one, for the maternally expressed case our
expressions for the reproductive means are

µ1F = µ1M = q1 µ1 +
q2
2

(µ1 + µ2) =
1 + µ1

2

µ2F = µ2M = q2 µ2 +
q1
2

(µ1 + µ2) =
1 + µ2

2
µ1∗ = µ1

µ2∗ = µ2

µ∗1 = µ∗2 = q1 µ1 + q2 µ2 = 1

(S37)



This simplifies our effective fitness expressions to

w1m =
1

2

(
1

2
(1 + µ1)

2 − (1 + µ1)σ2
1∗

2N
− (1 + µ1)σ2

∗1
2N

− µ2
1 σ

2
1F

N
− σ2

1M

N

)
w2m =

1

2

(
1

2
(1 + µ2)

2 − (1 + µ2)σ2
2∗

2N
− (1 + µ2)σ2

∗2
2N

− µ2
2 σ

2
2F

N
− σ2

2M

N

) (S38)

We can also simplify our expressions for reproductive variance. First, we introduce the simplifications
associated with assuming that the phenotype depends only on the identity of the maternally inherited allele.

σ2
1F = q1 σ

2
1∗F +

q2
2

(
σ2
1∗F + σ2

2∗F
)

σ2
2F = q2 σ

2
2∗F +

q1
2

(
σ2
1∗F + σ2

2∗F
)

σ2
1M = q1 σ

2
1∗M +

q2
2

(
σ2
1∗M + σ2

2∗M
)

σ2
2M = q2 σ

2
2∗M +

q1
2

(
σ2
1∗M + σ2

2∗M
)

σ2
1∗ = σ2

1∗F + σ2
1∗M

σ2
2∗ = σ2
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2∗M

σ2
∗1 = σ2

∗2 = q1
(
σ2
1∗F + σ2

1∗M
)

+ q2
(
σ2
2∗F + σ2

2∗M
)
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Next, we reparameterize these equations in terms of the total variance (e.g., σ2
1 = σ2

1∗F + σ2
1∗M ) and the

difference between male and female variances (e.g., ∆σ2
1 = σ2

1∗M − σ2
1∗F ). The variance expressions then

become

σ2
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1 + q1
2

(
σ2
1 −∆σ2

1

)
+
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2
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σ2
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2
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2

)
+
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(
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1
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1

)
+
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(
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2 + ∆σ2

2

)
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2

(
σ2
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2

)
+
q1
2

(
σ2
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1

)
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1∗ = σ2

1
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2
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2
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2
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Now, substitution into our fitness expressions gives us

w1m =
1

2

(
1

2
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1
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2

(
q1 σ

2
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)
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We can contrast these results with the analogous equations for alleles at a paternally expressed imprinted
locus. The first terms of the fitness expressions are identical for the two cases. However, the last two terms



differ in each case. In the maternally expressed case above, the µ2
1 and µ2

2 terms are multiplied by the
reproductive variances in females. In the paternally expressed case below, these squared mean terms are
multiplied by the reproductive variance in males.
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)
(S42)

Now, a final substitution will facilitate direct comparison of these results. We set µ2
1 = 1 + s2 and

µ2
2 = 1− s2. We can then compare the selective advantage of allele A1 over A2 at a maternally expressed

locus with the advantage of a similar allele at a paternally expressed locus. That is, we consider

w1m − w2m − (w1p − w2p) = −
s2
(
(1 + q1)(σ2

1 −∆σ2
1) + q2(σ2

2 −∆σ2
2)
)

4N

−
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(
(1 + q2)(σ2

2 −∆σ2
2) + q1(σ2

1 −∆σ2
1)
)

4N

+
s2
(
(1 + q1)(σ2

1 + ∆σ2
1) + q2(σ2

2 + ∆σ2
2)
)

4N

+
s2
(
(1 + q2)(σ2

2 + ∆σ2
2) + q2(σ2

1 + ∆σ2
1)
)

4N
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which reduces to

w1m − w2m − (w1p − w2p) =
µ2
1 − µ2

2

4N

(
(1 + 2q1)(∆σ2

1) + (1 + 2q2)(∆σ2
2)
)

(S44)

If males have a higher variance of reproductive success than females, as is most often the case, the terms ∆σ2
1

and ∆σ2
2 will be positive. That means that, in terms of the relative benefits of increased mean and reduced

variance, the benefits of increased mean reproductive success are greater for alleles when they are maternally
inherited than when they are paternally inherited.




