Supporting information: Influence of correlated antigen presentation on T cell negative selection in the thymus

Soumya Banerjee ${ }^{1}$ and S. Jonathan Chapman ${ }^{1}$
1 Mathematical Institute, University of Oxford, Oxford, United Kingdom.

S1 Appendix. Probability of negative selection.
When $p=2$, the probability of negative selection in a single interaction is

$$
\begin{aligned}
P_{1} & \sim \sum_{r=0}^{m / K}\left(1-\frac{d}{m}\right)^{m / k-r}\left(\frac{d}{m}\right)^{r}\binom{m / K}{r}\left(\left(1-\frac{r K}{m}\right)^{s}+\frac{s K r}{m}\left(1-\frac{r K}{m}\right)^{s-1}\right) \\
& \sim \sum_{r=0}^{m / K}\left(1-\frac{d}{m}\right)^{m / k-r}\left(\frac{d}{m}\right)^{r}\binom{m / K}{r}\left(1+\frac{s K r}{m}\right) \mathrm{e}^{-r K s / m} \\
& \sim\left(1-\frac{d}{m}+\frac{d \mathrm{e}^{-s K / m}}{m}\right)^{m / K}\left(1+\frac{s}{1+(m / d-1) \mathrm{e}^{s K / m}}\right) \\
& \sim \exp \left(-\frac{d}{K}+\frac{d}{K} \mathrm{e}^{-s K / m}\right)\left(1+\frac{s d}{m} \mathrm{e}^{-s K / m}\right),
\end{aligned}
$$

giving Eq (8). For $p=3$ we have instead

$$
\begin{aligned}
P_{1} \sim & \sum_{r=0}^{m / K}\left(1-\frac{d}{m}\right)^{m / k-r}\left(\frac{d}{m}\right)^{r}\binom{m / K}{r} \\
& \times\left(\left(1-\frac{r K}{m}\right)^{s}+\frac{s K r}{m}\left(1-\frac{r K}{m}\right)^{s-1}+\frac{s(s-1) K^{2} r^{2}}{2 m^{2}}\left(1-\frac{r K}{m}\right)^{s-2}\right) \\
\sim & \sum_{r=0}^{m / K}\left(1-\frac{d}{m}\right)^{m / k-r}\left(\frac{d}{m}\right)^{r}\binom{m / K}{r}\left(1+\frac{s K r}{m}+\frac{s(s-1) K^{2} r^{2}}{2 m^{2}}\right) \mathrm{e}^{-r K s / m} \\
\sim & \left(1-\frac{d}{m}+\frac{d \mathrm{e}^{-s K / m}}{m}\right)^{m / K} \\
& \times\left(1+\frac{s}{1+(m / d-1) \mathrm{e}^{s K / m}}+\frac{s(s-1)}{2} \frac{\left((K / d-K / m) \mathrm{e}^{s K / m}+1\right)}{\left(1+(m / d-1) \mathrm{e}^{s K / m}\right)^{2}}\right) \\
\sim & \exp \left(-\frac{d}{K}+\frac{d}{K} \mathrm{e}^{-s K / m}\right)\left(1+\frac{s d}{m} \mathrm{e}^{-s K / m}+\frac{s^{2} d K}{2 m^{2}} \mathrm{e}^{-s K / m}\left(1+\frac{d}{K} \mathrm{e}^{-s K / m}\right)\right),
\end{aligned}
$$

which is $\mathrm{Eq}(9)$.

S1 Fig. Distribution of the proportion of peptides recognised by each of 200,000 randomly generated TCR sequences shown on (a) log-linear and (b) log-log scales for a variety of values of $E_{\text {neg }}$, with $N=5$. The proportion of TCRs not recognising any peptides was approximately $6 \%, 12 \%, 19 \%, 31 \%$ and 44% for $E_{\mathrm{neg}}=-20.0 k_{\mathrm{b}} T$, $-21.0 k_{\mathrm{b}} T,-22.0 k_{\mathrm{b}} T,-23.0 k_{\mathrm{b}} T$, and $-24.0 k_{\mathrm{b}} T$, respectively.

S2 Fig. Distribution of the proportion of peptides recognised by each of 200,000 randomly generated TCR sequences shown on (a) log-linear and (b) log-log scales for a variety of values of $E_{\text {neg }}$, with $N=9$. The proportion of TCRs not recognising any peptides was approximately $0 \%, 0.4 \%, 4.4 \%$, and 21% for $E_{\mathrm{neg}}=-32.0 k_{\mathrm{b}} T,-35.0 k_{\mathrm{b}} T$, $-38.0 k_{\mathrm{b}} T$, and $-41.0 k_{\mathrm{b}} T$, respectively.

S3 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various TCR degeneracies, d. Other model parameters are $m=100000, p=1$.

S4 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various numbers of TCR-pMHC complexes in the immunological synapse, s. Other model parameters are $m=100000, p=1$.

S5 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various TCR degeneracies, d. Other model parameters are $m=10000, p=1$.

S6 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various numbers of TCR-pMHC complexes in the immunological synapse, s. Other model parameters are $m=10000, p=1$.

S7 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various TCR degeneracies, d. Other model parameters are $m=100000, p=2$.

S8 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various numbers of TCR-pMHC complexes in the immunological synapse, s. Other model parameters are $m=100000, p=2$.

S9 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various TCR degeneracies, d. Other model parameters are $m=10000, p=2$.

S10 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various numbers of TCR-pMHC complexes in the immunological synapse, s. Other model parameters are $m=10000, p=2$.

S11 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various numbers of TCR-pMHC complexes in the immunological synapse, s. Other model parameters are $m=100000, p=3$.

S12 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various TCR degeneracies, d. Other model parameters are $m=10000, p=3$.

S13 Fig. Mean probability of escape in a single interaction, P_{1}, as a function of the number of mTEC classes, K, for various numbers of TCR-pMHC complexes in the immunological synapse, s. Other model parameters are $m=10000, p=3$.

S14 Fig. The mean probability of escape as a function of K / d, illustrating the collapse of the data when $s>2 m / K$. The curve is given by $\mathrm{Eq} \sqrt{6}$. The points are calculated using all those combinations of $s=100,200,500,1000,2000, K=1,2,4,5,10,20,50$, $100,200,500,1000, m=10^{4}, 10^{5}$, and $d=1,2,5,10,20,50,100,200,500,1000,2000$, $5000,10000,20000,50000,100000$, which satisfy the constraint $s>2 m / K$ (and $d \leq m)$. The plot shows data for $p=1$. For $p=2$ the requirement is more like $s>3.5 \mathrm{~m} / K$; for $p=2$ the requirement is $s>5 \mathrm{~m} / \mathrm{K}$.

S15 Fig. The mean probability of escape as a function of m / K. The curves are given by Eq (8). The points are calculated values, using both $m=10^{4}$ and 10^{5}. For $s=500$ these points lie on top of one another. For $s=2000$ the difference between the two sets of points is just visible near $m / K=10^{4}$. Here $p=2$.

