PROCEEDINGS A

rspa.royalsocietypublishing.org

Research

Article submitted to journal

Author for correspondence:

Sachin Y. Shinde

e-mail: sachin@iitk.ac.in phone: +91 512 259 6939

Physics of unsteady thrust and flow generation by a flexible surface flapping in the absence of free stream: Media Summary

Sachin Y. Shinde¹ and Jaywant H. Arakeri²

^{1,2}Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560012, India.
¹Current address: Department of Mechanical Engineering, Indian Institute of Technology, Kanpur-208016, India.

Inspired by the flexible wings and fins of flying and swimming animals, we investigate the mechanism of flow and thrust generated by a flapping flexible surface in hover-like situation. Our analysis reveals that the orderly, narrow vortex jet and the associated thrust generated in an otherwise quiescent ambient is a two-dimensional analog of the three-dimensional flow structure in natural hovering; however, the mechanism is simple and different from the 'standard' mechanisms in birds and insects. We show that flexibility induces 'unsteady actuator disk (thin disk accelerating fluid by adding momentum-energy)' type action like the 'pulsed actuator disk' model (1984) proposed for hovering insects. Flapping flexible surfaces can have applications in electronic and room cooling.