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S1 Rationale for biped model selection

Independent of the literature on pedestrian-induced bridge oscillations, numerous previous studies
have considered the mechanics of bipedal walking and running, some focusing on energetics and some
focusing on stability and control [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Further mathematical
models proposed with the motivation of understanding interactions with a bridge include mathematical
abstractions of human locomotion [16, 17|, linear inverted pendulums which assume that humans stay
nearly vertical [18, 19] and more complicated walkers with springs and dampers that use ad-hoc external
forces to maintain stability [20]. The inverted pendulum model used here is just one of many such
models, but we feel that it provides a better approximation to actual human motion while remaining
computationally tractable.

The inverted pendulum model is certainly (and intentionally) an extreme simplification of the complex
dynamics that attend the human body and indeed the human walking motion. It is perhaps the
simplest walking model that captures key features of walking stability, specifically the instability due
to inverted pendulum-like body dynamics and stabilization using foot placement. Further, as noted
in the main manuscript, our weighting of absolute and relative sideways velocity error in the foot
placement controller promotes stability despite surface motions and models humans weighting different
sensors to produce a coherent state estimate [21]. In addition to simplifying the human body to
having a point-mass upper body and massless legs with no swing dynamics, the walking motion itself
is simplified in a manner that there is no double stance phase and there is no change in direction. Our
simulated walkers have a preferred straight line walking direction, whereas in a real crowd, walkers may
occasionally change direction to avoid another pedestrian, a feature we hope to incorporate in future
work.

Previous models used to simulate interactions of bipeds with a bridge were 2D models restricted to the
frontal plane and they did not have the ability to walk forward or the ability to fall to the ground (a
key aspect of walking stability). It is known that fore-aft and sideways walking dynamics are indeed
coupled [8]. A biped that is stabilized in the sideways direction may still fall forward, so it may not be
accurate to ignore the forward walking dynamics.



S2 Body equations of motion

For the model shown in figure 1 of main manuscript, there are two forces acting on the center of mass
during single stance, namely, the force along the leg F' and the weight of the biped mg, where m is
the biped mass, and g is acceleration due to gravity. The lateral, forward and vertical positions of the
body center of mass (CoM) are given by z, y and z respectively and the stance foot position in contact
with the ground is given by (Zfoot, Ytoots Zfoot ). Lhe leg length is ¢, given by,

52 = (w - xfoot)Q + (y - yfoot)2 + (Z - Zfoot)z . (1)

where zgot = 0. The equations of motion for the center of mass are:

mi = F W’ (2)
my = F Y = Ytoot _éﬁOOt, and (3)
mZ = F # —mg, (4)

which are applicable for all versions of the biped model. Recall that non-dimensionalization is performed
by dividing by appropriate combinations of mass m, inverted pendulum leg length ¢y, and acceleration
due to gravity g. In the following, we denote the non-dimensional analogues of dimensional quantities
by adding an overbar; for instance, fore-aft position 4 = y/fo, non-dimensional leg force F' = F/(mg),
non-dimensional speed v = v/+/gfp, and non-dimensional time ¢ = t1/g/¢y. The origin for all position
measurements is the current stance-foot position.

S3 Platform equations of motion

To simulate the bridge, we add another equation for the motion X (¢) of the bridge in the lateral

direction:
. T — Tfoot (5)

L
where K and B are the stiffness and damping of the platform in the lateral direction respectively, and
M is the appropriate modal mass of the bridge.

Miplatform + Bi‘platform + prlatform =-F

To simulate an externall shaken treadmill, the platform motion is specified as sinusoidal, of the form:

Tplatform = Aplatform sin (wplatformt + (Z)) (6)

where Apjatform is the amplitude, wplatform 18 the frequency of oscillation, and ¢ is the phase difference
between the biped stride and the platform oscillation.

S4 Leg force equations

The biped is assumed to perform an exact 3D inverted pendulum motion, we use a differential algebraic
equation formulation to enforce the leg length constraint. We do not fix the leg length, but rather
constrain the motion of the center of mass to be such that the leg length cannot change from the



beginning of the motion. The second derivative of this leg length constraint (equation 1) produces the
following additional ODE:

T — Tfoot z Y — Yfoot Z/ Z — Zfoot Z=—(z— iplatform — Z)2 - 22 + jplatform (I’ - xfoot) (7)
( )@+ ( )i+ ( ) ( )

This equation, along with the equations 2-4 can be combined to determine the acceleration of the
center of mass and the force along the leg. For the finite inertia platform, we add equation 5 to these
equations to get the lateral acceleration of the platform as well.

S5 Impulse equations

At the end of each biped stance phase a push-off impulse is applied to coupled system along the leg of
the biped. These impulses directly affect the momentum of the biped CoM and the platform.

mipost—push—off = mx‘pre—push—off + Ipush—oﬂ" : xiTZ:fOOta (8)
mypost—push—off = mypre—push—oﬂ + Ipush—off ' y_Tg;fOOt (9)
mzpost-push-off = mépre-push-off + Ipush-off : Z_ijoot7 (10)
In the finite inertia case, we also use equation 11.
. . Lfoot — L
Mplatform T platform,post-push-off = MplatformTplatform,pre-push-off 1 Ipush—oﬁ ’ T (11)

After the push-off, we solve for the value of the heel-strike impulses for each biped that would make
the leg-length-rate of the biped 0, thus insuring continued inverted pendular motion, we apply the
heel-strike impulse similar to equations 8 - 10.

S6 Order parameter equations

In order to compute the order parameter we first define the phase of a biped. We use step-length and
CoM position to determine phase:

Yy
Yfoot

¢ =2

(12)

Where both y and yg,o are measured with the stance-foot as the origin. The magnitude of the order
parameter is computed as follows [22]:

ol

P
1 ,
r= E €% (13)
=1

where ¢; is the phase of the 7" biped and P is the total number of simulated bipeds.



S7 Simulation parameters

We use k1 = 1, ks = 2, k3 = 2 and ks = —0.5 for the non-dimensional control gains in our foot-
placement and push-off feedback controllers. The non-dimensional biped speed is set to be 0.3.

For the finite inertia platform, the nominal values of mass, stiffness, and damping are identical to those
used in [16] as approximating the London Millennium Bridge: M = 1.13 x 10° kg, B = 1.1 x 10*
Nsm™!, and K = 4.73 x 105 Nm~!.

For non-dimensionalization, we used human mass m = 70 kg, maximum leg length ¢y, = 1 m, and
g = 9.81 ms~!. Small changes to these values do not affect the qualitative results presented in this

article.

S8 Metabolic cost model

The metabolic cost function contains the following four terms, identical to those defined by Joshi and
Srinivasan [4]:

1. the resting metabolic rate, the metabolic rate while not moving, about 1.4 Watts per kg [23].
The cost of locomotion is, as below, over and above this resting cost.

2. the stance work cost, a work-based metabolic cost term, a linear combination of the positive
and negative work performed by the leg. We use an average positive work efficiency of 25%
(Mpos = 0.25) and negative work efficiency of 120% (7neg = 1.2) [1, 2]. The work is done by the
biped only during the push-off and heel-strike impulses.

3. the swing leg cost is the the cost of moving the swing leg from stance phase to the next, again
quantifies by a linear combination of the positive and negative work as before.

4. and the stance force cost, the integral of the force along the leg.

The sum of these four cost terms, per unit distance, is non-dimensionalized to estimate of the ‘cost of
transport’ of walking [24, 25].

S9 Mathematical remarks on entrainment

Resonance. The classic notion of a resonance is a phenomenon in linear dynamical systems, in which
a structure (such as a bridge) with a particular natural frequency of passive vibration f, is excited
by some external periodic force with frequency close to f,,. In such cases, the applied external force
is not generally affected by the motion of the system. The phenomena considered here cannot fully
be understood using ideas and intuition drawn from resonance. First, in our bridge-pedestrian case,
the pedestrians and the bridge, and there is two-way coupling between the two. The pedestrians are
affected by the bridge and vice versa. Further, If the pedestrians walk with zero step width initially,
which was our assumption for simplicity, there is no initial sideways forcing on the bridge. So it is



the instability of this planar periodic motion that gives rise to the steady state bridge motion. Such
instability-driven forcing of structures and having multiple regimes of oscillation versus no oscillation
are not part of the phenomenology of resonance.

Phase response curves. The formal mathematics of entrainment and synchrony usually invoke the
notion of ‘phase response curves’, which characterize how an asymptotically stable oscillator such as a
human walker is affected by a discrete external perturbation such as the sudden and brief movement of
the ground or a discrete pull from the outside [26, 22]. Then, a continuous or periodic external forcing
such as due to a bridge can be considered as a sum over such brief forces, and the resulting response of
the bipedal walker by integrating over the forcing function (by ‘convolving’ the forcing and the phase
response curve). The technically correct use of the phase response curves requires that the bridge and
the pedestrians are weakly coupled. Such weak coupling assumption is a good approximation when a
few pedestrians are coupled to the massive bridge, shaking slightly, so that the bridge can affect the
person, but the person cannot affect the bridge; the same is true for the response to a slightly shaken
treadmill. However, once we have hundreds of pedestrians on the bridge or if the bridge or treadmill
moves substantially, the weak coupling assumption may not be accurate. The use of phase response
curves for the mathematical analysis of human-bridge coupling is beyond the scope of this article.

Limiting cases. As alluded to in the previous paragraph, independent of the use of the phase
response curves, it may be insightful to consider some limiting cases of the coupled pedestrian-human
system. Given that the entrainment occurs only when the pedestrian mass becomes large enough, it
may be useful to consider the limit of infinitesimal bridge mass. But the limit of truly zero bridge mass
with non-zero stiffness and zero damping leads to a mathematically singular limit that does not allow
inverted pendular walking. This is because the push-off and heel-strike impulses from the human will
create infinite sideways bridge speeds due to the zero bridge mass and damping. It may be possible to
consider a bridge with zero mass, but with non-zero damping and stiffness, but this limit is not much
more analytically tractable and also requires some simulation.

S10 An impulsively stabilized inverted pendulum

We have used a mechanistically-motivated feedback controller for human walking to show that bridge-
shaking naturally emerges from these dynamics coupled to the bridge. We hypothesize that the primary
dynamical mechanism needed for the bridge to shake sideways is some ‘feedback controller’ that corrects
a sideways fall by applying a restoring sideways force against the substrate roughly periodically. We
now provide a second example supporting this hypothesis.

Consider an inverted pendulum ‘standing’ on a platform (such as a bridge), attached to the world
through a spring (figure S7a). The inverted pendulum is stabilized by an ankle torque impulse, applied
once every T time units. The stabilizing ankle torque impulse P,k uses a proportional-derivative
controller, proportional to the inverted pendulum angle and angular velocity: Pynxe = —kpt — kqb.
The linearized coupled equations of motion for the bridge and the inverted pendulum are of the form:

Mi'platform + prlatform + Ciplatform = F7 and mi + F =0

where m is the mass of the point-mass in the inverted pendulum, F' is the horizontal interaction
force between the pendular mass and the bridge due to passive pendular dynamicss, and angle 6§ =



( — Zplatform)/¢. To simulate the effect of multiple synchronized inverted pendula, we can scale the
mass m, the interaction force F', and the gains k, and k4 by the number of pendula N. For low N,
the vertical position of the inverted pendulum is stable (§ = 0) due to the feedback controller, but for
large N, the vertical position becomes unstable giving rise to platform oscillations (figure S7b), quite
similar to those observed in the walking simulations described in the main manuscript.

A related problem is related to the art of slack-lining, in which a person walks on a thin elastic
band tied between two poles [27], in which one observes uncontrolled oscillations of the feet and the
elastic band when the feedback control has a delay between sensing and actuation, rather like the
implicit delay between successive actions during walking or the impulsively stabilized walker described
above. Similarly, continuous (non-impulsive) stabilization of inverted pendulum using a traditional PD
controller goes unstable at large delay in the feedback [28].

Bridge oscillation peaks for last 20 seconds (“steady state”)
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Figure S1: An “orbit diagram” illustrating complex motions of the bridge and dependence
of bridge “amplitude” on N. At each pedestrian number N, we perform a long simulation. From
this long simulation, we obtained the ‘peaks’ of the bridge oscillations (i.e. the maximum rightward
bridge deviations from its static position) from the last 20 seconds of the simulation. We plot all of
these oscillation peaks as a function of N. If all oscillation peaks are identical, we obtain a single point
per N, as in the N > 350 regime for identical bipeds — corresponding to the bridge having the same
period as two human steps. If the oscillation peaks are different, as in a multi-step periodic motion or
a non-periodic motion, the points represent the various oscillation peaks that the bridge goes through.



a) Control gains with reversed signs

N =400, P=1, Bridge initial motion = 1e-4
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Figure S2: Bad controllers make the biped fall. Biped body trajectory is shown for two different
“bad” feedback controllers, and both these controllers results in the biped falling in a few steps. a)
Controller with all feedback gains in the model are reversed in sign. b) Controller with all feedback
gains set to zero. Both simulations start with the same small initial bridge oscillation. We notice that
the biped with the zero gain controller falls later than the biped with the reversed-sign-gains controller.



a) changes to the initial platform perturbation only affect the onset of steady-state oscillations
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b) with 4 bipeds being simulated changing the initial conditions even with
random initial biped phases only affects the transient motion of the bridge
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¢) the order parameter at steady-state is also the same
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Figure S3: Steady state is independent of bridge and pedestrian initial conditions. a) The
steady state bridge oscillations do not depend on initial conditions, but smaller initial bridge deviation
implies a longer time duration to reach near steady-state. b) The bridge’s steady state does not depend
on the initial conditions of pedestrians, whereas the transients do depend on the initial conditions. c)
The P = 4 bipeds simulated synchronize despite random pedestrial initial conditions and different
initial bridge deviations.



a) Changing gain Ez changes the number of pedestrians
required to shake the bridge
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b) Changing gain K, changes the stead-state oscillation amplitude by a small amount
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d) Changing gain k, changes the steady-state oscillation amplitude
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Figure S4: Bridge-shaking behavior is seen for a range of feedback gain values. Steady state
bridge oscillations are shown for a range of feedback gain parameters, suggesting some robustness of
the observed behavior to chosen gain values. However, as noted in Figure S2, this robustness does not
extend to large changes in gains, such as reversing their signs or setting them equal to zero.



a) Orbit diagrams for different walking speeds
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b) For much higher speeds we can get close to two step periodic results without exact periodicity

= 008,
RS
g 004
2 — speed 0.36 mass 80
0 P
()
el
E 004
Qo
=
5 008 100 200 300 400
time

¢) Higher speeds need a smaller mass to produce two step synchronized oscillations
take more time to produce these oscillations
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Figure S5: Bridge-shaking behavior is seen for a range of speeds. a) The bridge amplitude
as a function of effective pedestrian number is shown as an orbit diagram for three different speeds.
The same three qualitative regimes are seen for the different speeds, albeit with different ranges for
each regime. b, ¢, d) Bridge motion is shown for different speeds and correspondingly numbers of
pedestrians to qualitatively illustrate that the bridge-shaking behavior is seen for a range of speeds.
For larger speeds, for given controller gains, the bridge settles into a periodic motion for a smaller
number of pedestrians.
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a) Pedestrian lateral ground reaction force for the simulation
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b) Treadmill lateral motion for the simulation
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Figure S6: Lateral reaction forces on a shaken platform. The plots are from simulations of a
single biped walking on a treadmill that shakes sinusoidally with the following parameters: pedestrian
forward walking speed = 0.5 (non-dimensional) = 1.56 m/s platform lateral shaking amplitude = 0.01
(non-dimensional) = 1 c¢m, and platform lateral shaking frequency = 0.3 (non-dimensional) = 0.94 Hz.
The ground reaction forces have two dominant frequencies, resulting in a ‘beating’ oscillation as in [29].
For other parameters, when the person entrains to the platform one-to-one, the lateral reaction forces
are simply periodic at the shaking frequency, without the beating character.
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a) Inverted pendulum standing with periodic
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b) Standing model shows similar qualitative behavior to walking models
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Figure S7: Impulsive inverted pendulum standing. a) An inverted pendulum pivots about its
“ankle” on a platform. For consistency, the platform has the same properties as the Millennium Bridge
and the inverted pendulum has the same mass and length as the biped models discussed earlier. The
impulsive torques are applied at the frequency of normal human walking. b) When we scale the
pendulum properties (mass, feedback gains, and interaction forces) by the number of bipeds N, we
obtain decaying platform oscillations for low N (e.g., N = 200) and growing platform oscillations for
larger N (e.g., N = 300).
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Paper | Pedestrian Controller | 3D | Bridge Multiple Pedestrian re-
Model Model Pedestrians sponse to bridge
motion
Belykh | Phase os- | Phase cou- | No | Phase  oscil- | Yes and pedes- | Phase can change as
2017 cillator pling with lator which | trians can | a function of bridge
[17] bridge responds  to | have different | motion
pedestrian parameters
motion
Strogatz Phase os- | Phase cou- | No | Phase  oscil- | Yes Phase can change as
2005 cillator pling with lator which a function of bridge
[16] bridge responds  to motion
pedestrian
motion
Bocian | Inverted Impulse No | Vertically No Step-timing can
2013[19]| pendulum | maintains shaking bridge change in response
linear with sinusoidal to bridge motion
momentum motion
Bocian | Linear Hof foot | No | Multiple Yes Lateral foot-position
2012 inverted placement bridge vibra- can change in re-
[30] pendulum | model tion modes sponse to bridge mo-
driven by tion
pedestrian
motion
Joshi Point- Energy Yes | Lateral spring- | No Just periodic motion
Srini- mass with | minimiz- mass-damper
vasan telescop- ing feed- model
2014 ing legs forward
4] optimal
trajectory
Joshi Inverted Linear Yes | Lateral spring- | Yes and pedes- | Step-length, step-
Srini- Pendulum | controller mass-damper trians can | width and push-off
vasan based bridge have different | impulse can change
2018 on hu- parameters in response to bridge
man foot- motion
placement
with an ad-
hoc linear
push-off
impulse law

Table S1: Features of some previous articles on 3D walking or interaction with bridge surface, showing
how our article is distinct from them.
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