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1. Stochastic differential equations: The Runge-Kutta Algorithm

A one dimensional stochastic differential equation (SDE) is an equation of the form (see Eq. (1) of
the main paper)

&= f(z,t) + /0 (). (1.1)

in which 7 is the noise intensity and £(¢) is a white Gaussian d-correlated noise such that

(€@®) =0 and (£(t1)&(t2)) = 6(t1 — t2),

These equations can normally be solved only numerically by using standard methods of solution
of Stochastic Differential Equations (SDE) [1]. For the numerical findings in the main paper we
use a first order Runge Kutta algorithm [2], creating a set of realizations or trajectories and later
calculating the PDF over this set. To be more explicit, equation (1.1) is written in the so-called Ito
form as

du = f(xt) dt + /ndW; (1.2)

in which dW; = £(t) dt is the Wiener Process [3]. Let Xg = z¢ an initial condition and [0, 7] the
interval over which (1.2) must be integrated. The numerical solution for a trajectory of (1.2) by the
RK algorithm is then approximated by the Markov Chain Xy, in which the index n denotes the
time dependence, defined recursively as

Xnt1=Xn + %(Kl + K3), (1.3)
forn=0,1,..., N, and in which
Ky = Atf(Xn)+ vn (AWn — Sn, At),
Ky = Atf(Xn+ K1)+ /1 (AWn + Sn, At),

with Sp, , ==+1, each alternative chosen with probability 1/2, At= % and the AW, are
independent and identically distributed normal random variables with mean 0 and variance At.
The explicit form of the term AW, is given by

AWp =V At Z,

with Z, a normal random variable. In order to generate the Z, we use the Box-Muller-Wiener
algorithm [1] as follows: Let U; and Uz be a pair of independent random variables that are
uniformly distributed in the interval (0, 1], and compute

Z =+/—2 log(Uy) cos(2mU2),

then, Z is a normal random variable.

(a) Simulation of SDE for a time-independent Langevin force
(i) Numerical simulation for & = iz — 23 + VI&(t).

The RK scheme described in the previous section (equation (1.3) can be directly applied for the
integration of a time-independent Langevin equation. Fig. 1 shows six trajectories or realizations
obtained by integrating the SDE & = pux — 3+ V/1&(t) using the described RK algorithm as well
as the deterministic solution (black dotted curve) of the noiseless equation.

(i) Numerical simulation for & = y1 + 22 — oz + VN &(t)

Similarly, Fig. 2 shows five trajectories or realizations obtained by integrating the SDE & = p +
2?2 — axd + V/1&(t) using the RK algorithm.
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Figure 1. A set of 6 realizations for the SDE & = uzx — x> + /1 &(t) representing a Pitchfork Bifurcation with initial
condition 2(0) = 2o = 0.003 for the deterministic upper branch and zg = —0.003 for the lower branch. In the simulation
we set e = 1.0, and the amplitude of the noise is 7= 0.09. The black and blue dotted curves are the deterministic

solutions when 1 = 0. For solving the stochastic equation we discretize the time interval [tmin, tmax] = [0, 10] in the RK
algorithm by setting a time step dt = 0.005.
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Figure 2. A set of 5 realizations for the SDE & = e + 2% — az® + /7 £(t) with initial condition (0) = zo = 0.005.
In the simulation we set e =1.0, « = 0.5 and the amplitude of the noise is n =0.2. The black dotted curve is the
deterministic solution with 7 = 0. For solving the stochastic equation we discretize the time interval [tmin, tmax] = [0, 6] in
the RK algorithm by setting a time step dt = 0.002.

(b) Simulation of SDE for a time-dependent Langevin force

The scope of the RK algorithm is not limited to time independent Langevin forces, it does indeed
work correctly for time-dependent cases as well.

(i) Numerical simulation of & = at 4+ 22 + /[ £(t).

In this section we show the results obtained by applying the scheme based on equation (1.3) for
the Langevin time-dependent stochastic differential equation

i =at+ 2 + nEt). (1.4)
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This model was suggested by Dorodnitsyn [6] in the mid forties and more recently by Pomeau
and collaborators [7] to model the forecasting of catastrophic events. In equation (1.5) the factor
at plays the role of the bifurcation parameter in a saddle node bifurcation. If at < 0 one has a
quasi-static situation, that is, if a < 1, then the solution is = &~ ++/—at, however as soon as at > 0
these solutions become complex numbers. For the sake of clearness, set o =7 =0, then equation
(1.5) is of Riccati’s type and it can be integrated by the substitution

where y(t) satisfies the linear Airy equation y” (t) + (at)y(t) =0, so that y(t) = c; Ai(—a'/3t) +
co Bi(—al/ 3t). For simplicity, take ca = 0 then, z(t) ~ —/—at as t — —oo, more important, the first
Zero, a3t~ 2.338, of the Airy function, Ai(—al/ 3t) = 0, represents a finite-time singularity of the
physical variable z(t) ~ 1/(t« — t). In figure (Fig. 3) it can be seen a simulation of the deterministic
and its stochastic counterpart for equation (1.4).

t
£
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Figure 3. A set of 5 realizations for the SDE @ = at + 22 + (/77 £(t) with initial condition z(—30) = z¢ = —5.47.
In the simulation we set a = 1.0 and the amplitude of the noise is 7 = 0.7. The black dotted curve is the deterministic
solution with 7 = 0. For solving the stochastic equation we discretize the time interval [tmin, tmax] = [-30, 2.2] in the RK
algorithm by setting a time step dt = 0.05.

(i) Numerical simulation of & = at + 22 — oz + ﬁ&(f)

Previous model predicts a finite time singularity that may be annoying in the numerical study
of the probability density functions a s a function of time. Therefore we include the parameter «
is to avoid the occurrence of this singularity. In Ref. [7] the presence of noise plays an important
role, as the statistical properties of precursors may give information about the existence or not of
a catastrophe.

In this line we have performed numerical simulations applying previous scheme to equation

j::at+x2—ax3+\/ﬁ§(t). (1.5)

As done in previous sections, we integrate the stochastic differential equation using the first
order Runge-Kutta method (1.3). Fig. 4 shows six different numerical realizations of equation
(1.5), showing that the transition or catastrophe time is quite unpredictable (in the same plot is
shown the deterministic trajectory when n = 0).

The above scheme is the core in which we can calculate the probability distribution function
in the corresponding section on the time-independent Langevin force, by generating 6000
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Figure 4. Numerical simulations of equation (1.5) for 6 different realizations, with parameters a = 1073, a = 0.7, n =
0.005. The black segmented curve is the solution for the noiseless equation by the standard Runge-Kutta algorithm
and trajectory’s curves are calculated solutions by simulation of the SDE employing the RK scheme. The time step is
At =0.03. over a time interval [—30, 40].

realizations. Then having computed the realizations a frequency histogram is constructed and
the probability distribution function is obtained by normalizing the histogram, shown in Fig. 2 of
the main paper.

2. Probability distribution function and MET in various 1-D
situations.

Two general cases were studied in one dimension to test the numerics: a pitchfork and a

subcritical bifurcation. We compute the PDF by calculating the probability distribution function

after generating a large number of realisations of the SDE (1.1). We compare it, by computing

numerically a discretised version of the path integral kernel (Eqn. (3.7) of the main paper), and

solving the eigenvalue problem (Eqn. (3.10) of the main paper) to find the stationary probability.
As a first example let’s consider the codimension 1 pitchfork bifurcation :

filet)=pz —2°. @.1)

This Langevin force follows a symmetric double-well potential, f1(z)=—V'(x), with V(z) =
— /2+ at /4. This system has two stable fixed points at « = %, /jz (attractors) and one unstable
fixed point at z = 0. A second example is the Langevin force for the subcritical bifurcation:

fola,t) =€+ 2* — az. (2.2)

This is also a potential case with V(z) = —ex — 23/3 + az® /4, however is a codimension 2
bifurcation, the transition pointse =0 and e=-— ﬁ, representing a saddle node bifurcation.
As is well known, this saddle node is defined by the disappearing of two equilibrium points (one
stable and another unstable). For — 27409 < e<0, the system possesses bi-stability, that is there
are two stationary stable solutions. In terms of energy, the potential has two stability basins of
attraction. These solutions are connected by the remaining unstable solution.

Fig. 5 shows the PDF for the cases of Pitchfork and sub-critical bifurcations. We arrive at the
numerical solution via the computation of the PDF calculated from a large number of realizations
of the respective SDE by employing the stochastic RK algorithm.

Additionally, for the computation of the stationary probability is employed the path integral
kernel (Eqn. (3.5) of the main paper). We compute it by discretising the spatial variables,
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Figure 5. Normalised PDF for the case of a pitchfork bifurcation (2.1) and a subcritical bifurcation (2.2) with noise.
Each plot contains an orange bar plot with the normalised PDF, computed from realisations of the respective SDE by the
RK scheme. The continuous red line represents the path integral computation, that is p€? (defined through egn. (3.10)
of the main paper) ), and the blue dots show the result of the exact stationary probability (pst ~ e~V @)/1 see eqn.
(2.6) of the main paper). The kernel spatial discretisation is N =400 and N = 500 points respectively. (a) Pitchfork
bifurcation (2.1) with i =1 (hence he attractors are located at x = £1), n = 0.1, dt = 0.25 and 18000 realisations. (b)
Subcritical bifurcation, (2.2), with e = 1.0, a = 0.5 (attractor is located at z = 2.36). The stochastic simulation parameters
are n = 0.2 and 18000 realisations.

restricting the domain of the x variable to the interval [—3, 3] and dividing it into 400 points
and [—1, 3] and 500 points for the second bifurcation. The discretised kernel, a 400 x 400 matrix,
allows us to compute the equilibrium probability after the Eigenvalue problem (eqn. (3.10) of the
main paper). Finally, we compare both numerical solutions with the exact stationary probability,
which always exists in one-dimensional cases.

To compute the mean exit time we make use of a known result in one dimension [5] known as
Dynkin’s formula, which allows the computation of MET over a potential barrier from an attractor
located at a point x4 on the left well up to a saddle point z¢:

2 [TA 2V(y) [T _2v(»)
T=7(x4,0)== dye 7 e~ dz. (2.3)
77 el Yy
T T AT [,
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Figure 6. Mean first passage time (7(z’,0)) as a function of noise intensity », with an initial probability po(x) =
d(x — z’). Continuous line correspond to Dynkin’s formula (2.3) and red dots correspond to the path integral method
using formula (3.13) of main paper. The insets plot the relative error between both solutions (a) Mean first passage time
(MFPT) for the pitchfork bifurcation (2.1) with 4 = 1, and an initial trajectory starting at ' = —1 vs. noise amplitude 7. (b)
MFPT as a function of noise intensity 7 for the sub-critical bifurcation (2.2) with e = —0.2, « = 0.5 and an initial trajectory
starting at 2’ = —0.41.
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The results of computing the Mean Exit Time for the same two previous cases, using Dynkin’s
formula (2.3) and Path Integral’s formula (3.13) in main paper are shown in Fig. (6). It compares
both calculations for the cases of the pitchfork (2.1) and subcritical (2.2) bifurcations. Because
the mean first passage time depends explicitly on the original probability distribution, for
purposes of comparison we have settled the initial probability distribution at the attractors of
the specific Langevin force. As we can see, in Figs. 6 (a) and (b), both computations are almost not
distinguishable from each other with a relative difference less than few percent.

3. Non-gradient drift forces [9,10].

Stationary solutions of the Fokker-Planck equation satisfies the d-dimensional partial differential
equation:
9
OxH

n 0 wp)
(f”(w,t)P— 297 QM P) =0. (3.1)

In the limit of small noise, 7 < 1, the stationary probability is approximated by a WKB like
expansion

pot(a,m) = e~ n?@M, (3.2)

with ¢(x, 1) = ¢ (@) + ¢ (x) + 1> ¢? (@) + ... The zero-order term, ¢(*)(x) satisfies a
Hamilton-Jacobi equation for ¢(x), namely [9,10]:

8(;5(0) 8(]5(0) 0
’,I,I/ /J/
D - ff(x)s— =0. (3.3)

Notice that in the previous Hamilton-Jacobi equation is equivalent to define

8(}5(0)
Bl — MY

where R*(x) a reminder term, together with the orthogonality condition:

+ R¥ (),

a¢(0) B

R (x) ozh —

. . () . .
The most probable points are the minimum of ¢, hence aéfm,, =0, therefore in this case,

though the system reaches equilibrium, the Langevin forces are not null, because f*(x) = R"(x).

Though this nonlinear eikonal-like equation (3.3) can be solved in some situations, however, as
expected, in most general cases the system does not have a potential gradient over all the phase
space. In what if follows we show two examples having simple solutions.

(a) Hopf-bifurcation
Consider the normal form of the Hopf-bifurcation [8]:
A=A—(1+ia)|APA, (3.4)

for the complex amplitude A(t) = z(t) + iy(t). One readily notices that in this case the potential
is the usual “mexican-hat” U(1),

04, A) =~ |41 + 5|41,

and the reminder term is
R=—ia|A]*A,

which is orthogonal to the potential gradient. Moreover,

B 960

By + R.

10000000 V 008 "H "SUBLL lud B10'BulysgndAlaioosiesol-els) H



As noticed by Jauslin [9], the “equilibrium” points, the minima of ¢, are not stationary as in a
usual gradient drift dynamical system. Indeed, looking for the condition g A) =pA —|APA=0,
one gets Ay =0, which is a local maxima, and | As |2 =1, which is a degenerate minima, i.e. As =

i represents a continuous family of solutions. These solutions do not vanish the drift because
R = —iaAs, represents a rotational dynamics:

As(t) = —iads & Ag=e .

(b) A two-dimensional bistable system.

Consider the co-dimension 2 model [12] (which is a variation of Maier and Stein’s model [11],
eqn. (4.2) of main paper):

. 1

& = o —a’ - s (u1 — p2) y°x (3.5)

. 2

gy o= poy—y° - <“f +v “1) zy (3.6)
M1 2

Because of the polynomial character of the above, one may find a polynomial non-equilibrium
potential, subsequently with the property that the asymptotic expansion will eventually close. A
solution can be found by setting:

b (1 0>,
0 v
d)(o) = e Jr;x4+/~01 2,2
15

ny
R = ( y(Mz— #290 —y2) > (3.7)

The correctness of the above expressions can be readily verified by the interested reader.
Finally, we point out that the extreme of ¢ corresponds to the points: (+,/p1,0) (local minima)
and (0, 0). In both cases the drift vanishes exactly at these points.

4. Path-integral numerical computations

The results of the path integral computation of previous models and the subsequent
comparison with the solution based on the non-equilibrium potential are given in figures 7 and
8. Fig. 7 considers a Hopf bifurcation, which exhibits rotational symmetry in the (z,y) plane.
Consequently to compare both solutions we “cut” at a vertical plane which passes through
y = 0. We show the surface probability distributions of the solution based on the non-equilibrium
potential and the resulting one based on the Path Integral Scheme, after 100 iterations (50
Iterations for the case n=0.07) for n=0.5 and the superposition of the cuts at the plane y =0
for both solutions for three noise intensities.

Fig. 8 shows the surface plot for the case of the bistable model (3.5)-(3.6), which has mirror
symmetry through y = 0 and « = 0 and in which are shown the 3D surfaces by both methods for
the three noise intensities and with common 120 iterations. The superposition of cuts at = 0 and
y =0 are shown as a main result into the paper.
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Number of Iterations : 100
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Figure 7. Path Integral solutions and transversal cuts at y = O for model of equation (3.4). The parameters are o = 0.5,
N = 36 points spatial discretization, 100 iterations for path integral computation when noise n = {0.1, 0.5}. (a) Analytic
3D Surface for n = 0.5. (b) Path Integral 3D Surface for n = 0.5. (c) Transversal cuts superimposed at y = 0 for cases
1n={0.07,0.1,0.5}. In the case n = 0.07 the spatial discretization was 44 points and the number of iterations 50.

5. Mean Exit Time

In the following we provide some details of the analysis of the numerical data for the path integral
computation of mean exit time. First, the exit time requires the calculation of the probability
transition from one attractive fixed point to another. This problem goes through a restriction of
the basin of attraction of one stable fixed point. We call this basin of attraction (2. Therefore one
needs to determine the geometry of (2. In the current case we consider the stable fixed point
at = —,/u1 and y =0, and more important, because of the symmetries, the separatrix of the
dynamical system is just the y-axis located at = = 0, therefore

N={(z,y)/ —c0o<z<0 & —co<y<oo}.

The discretisation restricts the domain to a rectangular domain of 50 points distributed in a
physical domain of size L x 2L. For the numerics we need to compute the full discretized
normalised kernel, /C, for a square domain 2L x 2L that mimics the whole phase space. Next,
the full Kernel is restricted up to K, (1/4 smaller in size than the full Kernel). As initial condition
we consider a Gaussian

pO(fC,y) ~ 6_20%(($+\/f71)2+y2),

of width o located at the aforementioned fixed point.
Then the path integral algorithm :

Lt +1)=Kaop? 1),

is ruled as far as desired. At each time step one sums the contribution over {2 to obtain the total
probability loss rate:

n? ()= (1alp” (1)), (5.1)

as a function of time.
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Number of Iterations : 120
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Figure 8. Analytic and Path Integral solutions for Bistable model (3.5)-(3.6) as function of noise. The parameters are
N = 36 points spatial discretization, 120 iterations for path integral computation, ;11 = 1.0, u2 =0.5and v =1.0 . (a)
Analytic, n = 0.07. (b) Path Integral, n = 0.07. (c) Analytic, n = 0.1. (d) Path Integral, n = 0.1. (e) Analytic, n = 0.25. (f)
Path Integral, n = 0.25.

Fig. 9-a shows a typical exponential decay of the total probability lost (5.1) as a function of
time. As expected n*(t) typically decreases exponentially in time, for instance for the case of Fig.
9-a one fits

7% (t) = Ae ™, with A =1.00852and A = 3.901367 x 10 °.

We have estimated the mean exit time in a threefold way:

(i) By using directly formula, 7 =€ ;= n*(t).
This method which works only in the case of moderate run times restrict the
computational possibilities to 1 2 0.07. For instance for n = 0.05 the total probability has
up to a factor of 0.52 in relation to the initial one. To overcome this difficulty we add the
following alternative estimates.
(ii) Use an exponential fitand set =1/
(iii) Use an exponential fit and integrate 7 = [° A% (t)dt.

Fig. 9-b shows the integration of the fitted exponential behaviour (iii) after 250000 iterations,
however, its final value may be estimated after 50000 steps by method (iii). Contrarily one notices
that the estimate (ii) is about 0.85% lower than (i) and (iii).
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Figure 9. a) The total probability n? (¢) in the attraction basin as a function of time. The inset confirms the exponential
decaying behavior. Here n = 0.1, 0 = 0.1, dz = 0.03. b) The three estimates as a function of the iteration step. One
notices that the estimate (iii) by the coefficient X is 0.85 % smaller that the other estimates.

The procedure has been repeated for several noise intensities in the range 0.03 <7 <2.5.
Conversely we have run the numerics for two distinct values of L such that the mesh sizes
are respectively dr =0.03 (L =1.5) and dx =0.06 (L =3) finding results which do not vary
substantially as it can be seen in Fig. 3b of the main paper. Finally we also check the robustness
under two different initial configurations.

Fig. 10 shows the dependency of the three estimates as a function of the width . One notices
that the estimate (i) and (iii) are quite similar and decreases as o increases. We understand that
by the following argument, as the width of the initial probability reaches the separatrix the mean
exit time is expected to diminish drastically in the first iterations. On the other hand, the estimate
(ii) by the coefficient X is constant, this is because A is related to the spectrum of the Kernel Ky,
something that is intrinsic to stochastic systems and does not depend on the initial condition.
Finally for the estimation, we conclude that o < 0.2 provides a safe estimation for a localized
initial probability.

[ 2N ]
x0L e 8 ) ° e o o o o .
°
2201 °
°
2101 °
o () ° °
200 @@ L4
® (iii)
190+ 0.2 0.4 0.6 0.8 1.0
o

Figure 10. Mean exit time as a function of the initial width of the probability distribution . The asymptotic value as
o —oois T — 191.9 for (i) and (iii), while 7 — 230.6 for (ii).
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