
Supplement for

Allosteric interactions in a birod model of DNA
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Several calculations have been omitted from the main text for the sake of brevity. They are given in this supplement
in detail.

1 Pictorial representation of the step-wise procedure to calculate interac-
tion energy (sec. 2 of the main text)

Balance Laws

Figure 1: Pictorial representation for the procedure outlined in the sec. 2 of the main text.

2 Exponential decay of interaction energy in a ‘ladder’

The calculation of interaction energies in a helical birod is considerably involved, so we first illustrate the main concepts
in a simpler birod model which we call a ‘ladder’ because it is not helical. We mimic the binding of a protein by force
pairs that tend to widen the ladder as shown in fig. 2. Our goal in this section is to demonstrate the utility of the
apparatus in section 2 and 3 of the main text by computing the interaction energy for two force pairs separated by a
distance a as shown in fig. 2. We work with a planar 2D birod in this section and assume small elastic deformations in
the outer strands and web to keep the calculations tractable. We, ultimately, find that the interaction energy between
the force pairs decays exponentially with distance a.
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Figure 2: A straight birod, referred to as a ladder, being pulled by two force pairs separated by a distance a. We show
that the interaction energy between the two force pairs given by ∆G = E2

a − E1
0 − E1

a decreases exponentially with a.

2.1 Step 1: Kinematic description of the two strands

We use the arclength parameter x to describe the mechanics of the birod. In the reference configuration, both the strands
± are straight, r±0 = x e1 ± d

2 e2, separated by distance d. Here e1 is a unit vector along the length of the birod, e2 is
a unit vector perpendicular to each birod bridging the gap between them and e3 is normal to the plane of the birod as
shown in fig. 2. We begin by assuming a general displacement in e1 − e2 plane. For the geometry shown in fig. 2 we
expect a mirror symmetry for deformation profiles along e1 such that

r+ = x e1 +
d

2
e2 + u e1 + w e2,

r− = x e1 −
d

2
e2 + u e1 − w e2,

(1)

where u = u(x) and w = w(x) are displacements along the e1 and e2 directions, respectively.

2.2 Step 2: Rotation of the two strands

At each point x on the ± strands we attach an orthogonal rotation frame which is simply R±0 = [ e1 e2 e3] = 13×3
(the identity matrix) in the reference configuration. The vectors e1 and e2 map onto d+

1,2 and d−1,2 in the deformed
configuration for the positive and negative strand, respectively. The di, i = 1, 2, 3 are again unit vectors.

d±1 = cos θ e1 ± sin θ e2 ≈ e1 ± θ e,

d±2 = ∓ sin θ e1 + cos θ e2 ≈ ±θ e1 + e2,

R± =

 cos θ ∓ sin θ 0
± sin θ cos θ 0

0 0 1

 ≈
 1 ∓θ 0
±θ 1 0
0 0 1

 . (2)

We assume small θ to keep the calculations tractable.

2.3 Step 3: Extension and rotation of the web

We decompose the kinematics of the web into a macroscopic deformation and a microscopic deformation [1]. The former
describes the rigid displacement and rotation, while the latter is related to the force and moment transferred by the web.

The macro- displacement vector r is defined as r = r++r−

2 = x e1 + u e1 [1]. The macro- rotation tensor is R defined as

R = (R+R−T )1/2R− [1], which in our case is

R = (R+R−T )1/2R− = I3×3. (3)

We define another tensor P relating R+ and R− to R. An elastic constitutive relation discussed in further sections
connects the micro- rotation tensor P = (R+R−T )1/2 to the moment transferred by the web.

P = (R+R−T )1/2 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ≈
1 −θ 0
θ 1 0
0 0 1

 . (4)

We need to calculate the Gibbs rotation vector ηηη = tan λ
2 k̂, where λ is obtained from 1 + 2 cosλ = tr(P) and k̂ is the

eigenvector of P i.e. Pk̂ = k̂. We need ηηη in the subsequent section to compute the moment transferred by the web [1].
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By direct observations, λ = θ and k̂ = e3, so that ηηη = tan θ
2 e3. The Gibbs rotation vector in the reference configuration

ηηη0 = 0.

The micro- displacement of the web is defined by w = r+−r−
2 , which is w0 = d

2 e2 in the reference configuration and

w = (d2 + w) e2 in the current configuration. We need w and w0 to compute the force transferred by the web.

2.4 Step 4: Governing differential equations

We calculate various strains and curvatures associated with the deformation and relate them to the contact force and
moment, respectively, which go into the governing equations. For detailed discussion on the relations used in this
section we refer the reader to Moakher and Maddocks [1]. The governing equations of the birod consist of three kinetic
components: the contact forces in the two strands n±, the contact moments m±, and the force f and moment c
transferred by the − strand onto the + strand. We compute each of these components as follows:

1. n±: We need strains in the current configuration v± and in the reference configuration v±0 , in the strands to
compute n±. These strains are:

v±0 =
∂r±0
∂x

= e1,

v± =
∂r±

∂x
= (1 + ux) e1 ± wx e2.

(5)

The contact forces n± = R±CR±Tv± where C is a second order tensor such that C11 = EA, C22 = GA and
C12 = C21 = 0. Here E is the stretch modulus, G shear modulus and A is the cross-sectional area of the strands.
Upon performing the calculation and taking account of the fact that u,w and θ are small and upon ignoring higher
order terms we get,

n± = EAux e1 ±GA(wx − θ) e2. (6)

2. m±: For calculating the contact moments m± in the respective strands we need the curvature vector κκκ± for
the two strands, which can, in turn, be obtained by computing the axial vector of the skew-symmetric matrices

U± = ∂R±

∂x R±T .

U± =
∂R±

∂x
R±T =

 0 ∓θx 0
±θx 0 0

0 0 0

 ,
κκκ± = ±θx e3.

(7)

The contact moment m± is related to the curvature via a bending rigidity EI such that

m± = ±EIθx e3. (8)

Here, I is the moment of inertia of the cross-section of the outer strands.

3. f and c: The force transferred by the web f is proportional to the change in the dimensions of the web quantified
by w and w0 in the previous sections such that,

2f =RHRT [w −Rw̌0] ≈ Lw e2, (9)

where H is a diagonal second order elasticity tensor such that H22 = L. Similarly, the moment transferred by the
web c is elastically related to ηηη and ηηη0 calculated in the previous sections:

2c =
1

α
RGRT (ηηη −Rη̌ηη)− ηηη × (w × f) ≈ Kθ e3, (10)

where α = 2
1+||ηηη||2 , G is a second order diagonal elasticity tensor and K = G33

2 .

The governing equations from box 4 in [1] are given by,

nx = 0,

mx + rx × n = 0.
(11a)

ncx − 2f = 0,

mc
x + rx × nc − c = 0.

(11b)
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In the above equations, n = n+ + n− = 2EAux e1, nc = n+ − n− = 2GA(wx − θ) e2, m = m+ + m− + w × nc = 0
and mc = m+ −m− + w×n = 2EIθx e3 + (d/2 +w) e2 × 2EAux e1 ≈ 2[EIθx − d

2EAux] e3. Upon substituting these
values into the governing equations we get,

EAuxx = 0,

2GA(wxx − θx)− Lw = 0,

2(EIθxx − d/2EAuxx) + (1 + ux) e1 × 2GA(wx − θ) e2 −Kθ e3 = 0.

(12)

We use θx = wxx − L
2GAw and uxx = 0 and get,

EIwxxxx − (
EIL

2GA
+
K

2
)wxx + (

L

2
+

KL

4GA
)w = 0. (13)

If we further assume that the outer strands are unshearable (GA → ∞ and θ = wx), the above equation reduces to a
simpler equation.

EIwxxxx −
K

2
wxx +

L

2
w = 0. (14)

2.5 Step 5,6 and 7: Interaction Energy

We substitute w = ems, and get eigenvalues m = ±λ,±µ. For illustration purposes, we assume λ and µ are real numbers
(i.e., K2 − 32L > 0) and the ladder extends from −∞ in the negative e1 direction to +∞ in the positive e1 direction
with w = wx = 0 at x = ±∞. Hence, for a force pair at x = 0

w(x) = Aeλx +Beµx when x < 0,

w(x) = Ae−λx +Be−µx when x > 0,
(15)

for some constants A and B which could be determined using boundary conditions in step 5. For two force pairs separated
by a distance a, the displacement profile w2(x) = w(x) + w(x − a). The elastic energy in the deformed configuration is
computed in step 6 and is given by,

E[w] = EIw2
xx +

1

2
Kw2

x +
1

2
Lw2. (16)

Finally, we compute the interaction energy defined by ∆G = E[w2]− 2E[w] in step 7 and find that it decreases exponen-
tially with the distance a.

∆G =
L

2

(e−λa (A2λ2µ−A2µ3 +A2λ3µa−A2λµ3a− 4ABλµ2
)

λµ(λ2 − µ2)
+

e−µa
(
4ABλ2µ+B2λ3 −B2λµ2 +B2λ3µa−B2λµ3a

)
λµ(λ2 − µ2)

)
+

K

2

(e−λa (A2λ3 −A2λµ2 −A2λ4a+A2λ2µ2a+ 4ABλ2µ
)

(λ2 − µ2)
+

e−µa
(
−4ABλµ2 +B2λ2µ−B2µ3 −B2λ2µ2a+B2µ4a

)
(λ2 − µ2)

)
+

EI
(e−λa (A2λ5 −A2λ3µ2 +A2λ6a−A2λ4µ2a− 4ABλ2µ3

)
(λ2 − µ2)

+

e−µa
(
4ABλ3µ2 +B2λ2µ3 −B2µ5 +B2λ2µ4a−B2µ6a

)
(λ2 − µ2)

)
.

(17)

We follow these steps for a helical birod model of DNA in the main text.

3 Kinematics of the − strand

In the main text we gave detailed derivations for the strains, curvatures, etc., for the + strand in our birod. We now shift
our attention to the complimentary − strand. The reference configuration of this strand is denoted by position vector
r−0 .

r−0 = b(cos(ωx+ α) e1 + sin(ωx+ α) e2) + x e3. (18)

Along the same lines as the + strand, we conceive the deformed configuration to be a helix wrapped around a curved
axis defined by curvatures k1, k2 and k3 along the directors d1, d2 and d3, respectively.

r−(x) = (b+ r−)(cos(ωx+ α+ β−) d1 + sin(ωx+ α+ β−) d2) +

∫ x

0

(1 + bξ) d3dx. (19)
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We use the same apparatus mutatis mutandis described for the + strand to calculate various quantities of interest. The
results are:

R− = [n− b− t−] = ZR−0 (1 + Θ−). (20)

where Θ− is a skew symmetric tensor.

Θ− =

 0 −θ−3 θ2
θ−3 0 −θ−1
−θ−2 θ−1 0

 ,
where θ−1 = (r−ω + b(β−x + k3)), θ−2 = −r−x cos k + β− sin k,

θ−3 =
g−

ω sin k
− (r−x cos k − β− sin k) cos k

ω sin k
.

(21)

We compute curvature κ− as follows,

Ω− =(t−x .t
−
x )1/2 = ω sin k − (r−xx + ξ) cos k + (β−x + k3) sin k,

κ− =Ω− − ω sin k = −(r−xx + ξ) cos k + (β−x + k3) sin k.
(22)

We obtain the moment m− as follows,

m− = EIκ−(cos k cos
α

2
f1 + cos k sin

α

2
f2 + sin k f3), (23)

where f1, f2, f3 are given as follows.

f1 =
(

sin(ωx+
α

2
) d1 − cos(ωx+

α

2
) d2

)
, f2 =

(
cos(ωx+

α

2
) d1 + sin(ωx+

α

2
) d2

)
, f3 = d3. (24)

4 Evaluation of material properties of the web

In this section, we consider a deformation of the double-helical structure induced by a stretching force F and torque T
on one end. We assume that the helix retains its helical configuration, but with changed geometrical parameters. Thus,
r, β and e are independent of x. Our goal is to compute the strains and curvatures, then evaluate the energy, and then
identify the stretch modulus, twist modulus and twist-stretch coupling modulus of the double-helical structure from this
energy expression. The computation of strains, curvatures, etc., of the helix proceeds as in the main text.

r+ = (a+ r)(cosωx(1 + β) e1 + sinωx(1 + β) e2) + x(1 + e),

r+ = −(a+ r)(cosωx(1 + β) e1 + sinωx(1 + β) e2) + x(1 + e),
(25)

We assume r, β, e ∼ O(ε), hence

r+ = (a+ r)(cosωx e1 + sinωx e2) + aωβx(− sinωx e1 + cosωx e2) + x(1 + e) e3,

r+x = (a+ r)ω(− sinωx e1 + cosωx e2) + aωβ(− sinωx e1 + cosωx e2)− aω2,

βx(cosωx e1 + sinωx e2) + (1 + (ex)x) e3,

= −aω2βx(cosωx e1 + sinωx e2) + ω(a+ r + aβ)(− sinωx e1 + cosωx e2) + (1 + (ex)x) e3.

(26)

The inextensibility condition gives,

|r+x | = |r+0x|,
(ex)x + ω2a(r + β) = 0,

(27)

t+0 , n+
0 and b+0 are the tangent, normal and binormal to the + strand in the reference configuration. We calculate tangent

t+ to the deformed configuration.

t+ =− sin kβx(cosωx e1 + sinωx e2) + (sin k + ωr cos k + β sin k)

(− sinωx e1 + cosωx e2) + (cos k − ω sin k(r + aβ)) e3,

=t+0 + ωβx sin k nnn+0 + (ωr + β tan k)b+0 ,

(28)

Next, we calculate the curvature κ+.

t+x =− (ω sin k2ωβ sin k + ω2r cos k)(cosωx e1 + sinωx e2)

− ω2 sin kβx(− sinωx e1 + cosωx e2).

K2 =ω sin k + 2ωβ sin k + ω2r cos k.

κ+ =K − ω sin k = 2ωβ sin k + ω2r cos k.

(29)

5



We go on to calculate the normal in the deformed configuration n+.

n+ =− (cosωx e1 + sinωx e2)− ωβx(− sinωx e1 + cosωx e2),

=n+
0 − ωβx sin kt+0 + ωβx cos kb+0 .

(30)

We are now in a position to calculate the deformed Frenet-Serret frame R+.

R+ = [n+ b+ t+] = R+
0 (1 + Θ+). (31)

where Θ+ is a skew symmetric tensor.

Θ+ =

 0 −θ+3 θ+2
θ+3 0 −θ+1
−θ+2 θ+1 0

 ,
where θ+1 = ωr + β tan k, θ+2 = ωβx sin k, θ+3 = ωβx cos k.

(32)

For the negative strand we follow the same procedure.

R− = [n− b− t−] = R−0 (1 + Θ−),

Θ− = Θ+,

κ− = κ+.

(33)

After performing all the calculations

E =

∫ L

0

(EI(2ωβ sin k + ω2r cos k)2 +
1

2
H1ω

2(r + aβ)2 +
1

2
L1r

2)−Mθ − F∆x,

∆x = eL, θ = βL.

(34)

We substitute r = − e
ω2a − aβ from eqn. (27) and compute the elastic constants as follows.

∂E

∂β
= 0,

∂E

∂e
= 0.

S =
∂2E

∂e2
, g =

∂2E

∂e∂β
, C =

∂2E

∂β2
.

(35)

Then, by trial and error we pick values of L1, L2, L3, H1, H2, H3,Kc,Ke, EI to match the S, g, C known from experiments.
Our choice of the material parameters L1, H2,Kc, etc., is not unique.

5 Choice of eigenvalues obtained in section 5

In section 5, we solve the governing differential equation eqn. 3.33 by substituting y(x) = y0e
−λx where y = (r, f, ξ, k3, β

±, nci , ni)
i = 1, 2, 3. We look for the values of λ corresponding to a non-trivial solution of the governing equations. For this we
need to solve the eigenvalue problem A(λ)v0 = 0, where A is a function of λ and elastic constants (eqn. 4.1) and
v0 = [r0, f0, ξ0, k30, β

+
0 , β

−
0 , n

c
i0, ni0]T i = 1, 2, 3. We set detA(λ) = 0 and get following solutions for λ.

x1 = −1.5× 104(1 + i), x2 = −1.5× 104(−1 + i), x3 = −4× 103, x4 = 1.2× 103(−1− 3.2i),

x5 = 1.2× 103(−1 + 3.2i), x6 = −0.68, x7 = −0.42, x8 = −0.36, x9 = −5.2× 10−10,

x10 = −1.9i, x11 = 1.9i, x12 = −3.8i, x13 = 3.8i, x14 = −6.2i, x15 = 6.2i,

x16 = 5.2× 10−10, x17 = 0.36, x18 = 0.42, x19 = 0.68, x20 = 2.3× 103(1.4− i),
x21 = 2.3× 103(1.4 + i), x22 = 1.5× 104(1− i), x23 = 1.5× 104(1 + i).

(36)

Among these 23 eigenvalues we neglect the eigenvalues x1,2,3,4,5,20,21,22,23 whose magnitude is > 103 because the cor-
responding decay length is tiny which leads to large numerical errors given that we need to compute third derivatives.
Then, there are small eigenvalues x9,16 whose magnitude is close to zero (< 10−3) and purely imaginary eigenvalues
x10,11,12,13,14,15 which when substituted in e−λx result in a constant or a sinusoidal function, respectively, that do not
decay to 0 as x→ ±∞. Hence, we must neglect these too. This leaves us with x6,7,8,17,18,19, which are used in section 5.
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6 Results for α = π radians
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Figure 3: Variation of strain variables for α = π radians. Notice that the curves are symmetric about the site of protein
binding. As mentioned in section 6, the curves are not symmetric if we choose α = 2.1 radians.
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