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1 Detailed simulation results for topographically
extended Klausmeier model

We consider the topographically extended Klausmeier model

Wt = T (W )−W −WB2 + a (1)

Bt = ∇2B −mB +WB2, (2)

where the water transport is given by

T (W ) = Tζ(W ) ≡ ∇ · (W∇ζ). (3)

We use the idealized terrain given by

ζ = v(x+ σ cos(k0y)), (4)

fix the plant mortality to m = 0.45 [1], and explore the influence of precipita-
tion a and channel aspect σ on patterns within the topographically-extended
Klausmeier model. Starting with small (∼ 5%) spatially uncorrelated Gaussian
noise on top of a uniformly vegetated initial condition, we integrate forward
in time using a fourth order exponential time differencing scheme [2, 3] on an
equidistributed mesh. Our calculations are performed in Fourier space and are
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fully dealiased. We use a periodic domain of [0, 50] × [0, 200] on a 128 × 512
grid. We consider our domain to be a small section of a hillslope and therefore
employ periodic boundary conditions along the x-direction. While the elevation
function ζ in Eq. (4) is not actually periodic along the x-direction because it
decreases steadily downslope, the use of periodic boundary conditions is never-
theless readily implemented since only derivatives of ζ appear in Eq. (3).

Generalizations of the Klausmeier model with transport TDvx(W ) = d∇2(W γ)+
vWx that include (potentially nonlinear) water diffusion in addition to the ex-
isting advection term in TKvx(W ) allow for pattern formation even when v = 0 [4]
and lead to spontaneous break-up of stripes on uniformly sloped terrain through
secondary instabilities [5]. The Gilad model [6] uses a water transport term of
the form TGζ (H) = ∇ · (H∇(ζ + H)) for surface water H, which also includes
a nonlinear water diffusion contribution that is not present for Tζ(W ). In this
study, we focus on the influence of topography in the context of banded patterns
where water transport is thought to be advection-dominated [7]. We therefore
do not expect water diffusion to play an essential role and, indeed, we find that
including a (linear or nonlinear) diffusion term in Tζ(W ) has negligible effect
on the results of our simulations provided some biomass is present. Heuristi-
cally, one possible danger with not including some form of water diffusion in
the model is that water may be able to accumulate in regions of high curvature
faster than it can evaporate. However we are modeling water-limited ecosys-
tems and capturing dynamics on time scales of years or longer. Therefore the
water input is assumed to be a constant mean value instead of having large
spikes corresponding to rain events. In this situation we find that the biomass
can effectively use up water and therefore diffuses fast enough to prevent any
divergence.

1.1 Arcing of bands in shallow channels

When a small channel aspect (0 < σ . 0.6) is taken, simulations produce
traveling wave patterns with bands that arc in the same direction as the under-
lying elevation contours. The straight band traveling solutions shown for the
Klausmeier water transport TKvx(W ) = vWx in Fig. 1(a) become the modulated
bands shown in Fig. 1(b) when the topographic extension Tζ(W ) with σ = 0.5
is used. While the bands are modulated such that the arcing-direction matches
the direction of curvature of the underlying terrain along ridges and valleys, the
vegetation bands do not closely match the contour lines shown superimposed
on the water field W . There is only a slight curvature of the contour lines in
Fig. 1(b) while the bands are noticeably more arced.

We also consider an alternate extension to the Klausmeier transport TKζ (W )
that includes only the advection term of Eq. (3). We find that this advection-
only transport,

TAζ (W ) = ∇ζ · ∇W, ζ = v(x+ σ cos(k0y)), (5)

does not produce arced vegetation bands. Figure 1(c) shows the result of a
simulation initialized with arced vegetation bands from Fig. 1(b) and using the

2



0

TK
vx(W ) = vWx(a)

yB

200

50

200

50

0 x

yW

0

Tζ(W ) = ∇ · (W∇ζ)(b)

200

50

200

50

0 x

0

TA
ζ (W ) = ∇ζ ·∇W(c)

200

50

0

3

200

50

0 x 0

1

Figure 1: Biomass (B) and water (W ) at t = 1000 from a simulation of the
Klausmeier system, Eqs. (1)-(2), (a) initialized with uniform vegetation and
small noise using TKvx(W ) = vWx and (b) Tζ(W ) = ∇ · (W∇ζ) where ζ =
v (x+ σ cos(k0y)). The solution shown in (b) is taken as initial condition for
a simulation using TAζ (W ) = ∇ζ · ∇W and the result at t = 1000 is shown in
(c). For each case black lines of constant elevation (straight in (a) and slightly
curved in (b,c)) are superimposed on W . If the W∇2ζ term is neglected from
Tζ(W ), then the simulation tends to straight vegetation bands shown in (c).
The simulations are carried out on a periodic domain of size 200 × 50 with
parameters a = 0.95, v = 10, m = 0.45, σ = 0.5, k0 = 2π/50.

transport TAζ (W ) above. The initially curved vegetation bands straighten out
to become the y-independent solution of the original Klausemeier model shown
in Fig. 1(a). The persistence of this straight-band solution in the presence of the
advection-only transport TAζ (W ) for σ 6= 0 can be understood as follows. A y-

independent solution to the original Klausmeier system with transport TKvx(W )
will also be a solution to the system with advection-only transport TAζ (W ). This

is because ∇W = Wxx̂ if Wy = 0, and so TAζ (W ) = TKvx(W ) for y-independent
W . Thus the solution with straight bands aligned along y continues to exist,
and numerical simulations (Fig. 1(c)) indicate that this straight-band solution
not only remains stable for σ 6= 0, but is actually a preferred solution in this
example.

1.2 Classifying patterns on ridges and in valleys

Figure 2 shows snapshots of biomass (at t = 1000) from simulations along
with elevation contours for various values of precipitation a and channel aspect
ratio σ that illustrate qualitatively different patterns predicted by the model.
We choose a precipitation value (a = 0.95) for which stable traveling waves of
banded vegetation moving uphill exist on a uniformly sloped terrain (σ = 0
as in Fig. 1(a)) and introduce a curvature in elevation transverse to the slope
(σ > 0). As noted in Sec. 1.1, e.g., σ = 0.5 in Fig. 1(b), the asymptotic state
remains a traveling wave with velocity directed uphill for small aspect ratio σ,
but the bands are arced convex-upslope within valleys and convex-downslope
on top of ridges.

For σ = 2, shown in Fig. 2(b), the simulation produces a periodic pattern
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Figure 2: Qualitatively different patterns as a function of the parameters (a, σ).
Biomass is shown at t=1000 from simulations with (a) a = 0.70 and σ = 4, (b)
a = 0.95 and σ = 2, (c) a = 0.95 and σ = 5, and (d) a = 1.05 and σ = 3. For
each case, the upper image shows the biomass on the full 2D domain while the
lower image shows profiles of the biomass along the ridge (red) and valley (blue).
Simulations are initialized with small noise on top of a uniformly vegetated state
and carried out on a periodic domain of size 200× 50 with parameters v = 10,
m = 0.45, k0 = 2π/50.

with a wavelength that is 1.5 times longer on the ridges than in the valleys. The
speed of the pattern on ridges is slower than within valleys, resulting in phase
slips in which bands extending across the ridges and valleys break apart into
arced segments and reconnect with other arced segments to form new bands
that extend across the domain. We note that the speed can be either faster
or slower in a valley, depending on parameters and the ratio of wavelengths.
When the wavelengths are the same, as is the case when σ = 1 and a = 0.95
(not shown), we find that the pattern in the valleys moves faster than the pat-
tern on the ridges. When the wavelengths are different, we find cases (e.g., σ = 2
and a = 0.95 shown in Fig. 2(b)) where the longer wavelength pattern on ridges
moves faster than the shorter wavelength pattern in valleys. Such behavior is
not unexpected based on trends of linear theory: the speed of uphill migration
computed from linearization about the uniform state increases with increasing
wavelength and decreases with increasing water loss rate when all other pa-
rameters are fixed [8]. Eventually, for large enough aspect σ, nearly uniform
vegetation cover develops within valleys while ridges becomes nearly bare (for
example σ = 5 in Fig. 2(c)). In this case the vegetation bands are restricted to
the channel walls between the valley and ridge lines, forming chevrons.

1.3 Mapping out patterns in the (a, σ)-plane

We map out the existence of patterned states of the topographically-extended
Klausmeier model in the (a, σ)-plane by scanning over the precipitation param-
eter a for fixed values of channel aspect σ as described below. We initialize each
simulation with a uniformly vegetated state at a high enough precipitation value
a so as to ensure that a state consisting of uniform vegetation cover on both
ridges and valleys is stable at the given value of σ. For each fixed channel aspect
σ, we decrease the value of a at a rate da/dt = −5× 10−5, adding 1% spatially
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uncorrelated Gaussian noise to the solution at time intervals of ∆t = 100. As
a check for hysteresis, at each fixed value of σ we also run the simulation for
increasing precipitation (da/dt = +5 × 10−5) starting from the last value of a
before the vegetation in the system collapses to the bare soil state.

We consider biomass profiles along the ridge BR(x) = B(x, y = 0) and the
valley (BV (x) = B(x, y = L/2) (red and blue profiles in Fig. 2) for a grid in the
(a, σ) plane with spacing ∆a = 0.01, ∆σ = 0.5. At each point on the parameter
grid, the pattern amplitude along the ridge (R) and valley (V ) lines is computed
via AR,V = maxx(BR,V (x))−minx(BR,V (x)). Because of hysteresis, the ampli-
tudes AR,V may be different for the decreasing and increasing a portions of the
simulation at a given point in parameter space. We are interested in mapping
out the parameter region of existence for patterns so we take the maximum of
AR,V between the increasing and decreasing a cases, whenever a difference can
be computed.

Figure 3(a) shows the maximum ridge (valley) pattern amplitudes AR (AV )
in red (blue) at each point in the (a, σ)-plane. Purple indicates where patterns
appear on both ridges and valleys while yellow indicates where no significant
pattern amplitudes appear on either ridges or valleys. The visualization of the
data in Fig. 3(a) does not distinguish between uniform vegetation cover and
bare soil so we additionally label each region of the parameter space based on
the ridge and valley states. The algorithm for obtaining the amplitude is illus-
trated for σ = 2.5 (see dashed gray line) in the right panels. Figure 3(b) shows
maxx(B(x)) (solid) and minx(B(x)) (dotted) as the parameter a is decreased
for y = 0 (red), corresponding a ridge, and for y = Ly/2 (blue), correspond-
ing to a valley. The pattern amplitude, computed by taking the difference,
A = maxx(B(x)) −minx(B(x)), are shown for ridge (red) and valley (blue) in
Fig. 3(c). Here the solid line represents the pattern amplitude as a is decreased
and the dotted line represents the pattern amplitude as a is increased. The
shaded regions in panels (b) and (c) represent the predictions for the existence
of patterns from the one-dimensional model for the ridge (red) and the valley
(blue).

2 Simulation results from a three-field model

We have partially mapped out the influence of terrain curvature as a function of
water input using a three-field model that subdivides water into a surface water
field H and a soil moisture field W . The model we use, a simplified version of
the Gilad model [6], takes the form:

Ht = p− I +Dh∇2H +∇ζ · ∇H + (∇2ζ)H (6)

St = I − νS(1− ρB)− γGw (7)

Bt = −mB + νGw(1−B) +Db∇2B (8)
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Figure 3: (a) Maximum of amplitude of patterns on ridge (red) and valley
(blue) in (a, σ) plane when a is decreased and then increased for fixed σ. Yellow
indicates small amplitude while red (blue) indicates large amplitude on ridge
(valley) and purple indicates large amplitude on ridge and in valley. Solid red
(blue) lines show predicted transitions between regions of parameter from the
one-dimensional approximation for the ridges (valleys). Each region is labeled
by ridge/valley state as bare soil (B), patterned (P) or uniformly vegetated
(U). (b) Profiles of maxx(B) (solid) and minx(B) (dotted) along the ridge (red)
and valley (blue) are shown for decreasing a for fixed σ = 2.5 (dashed line in
(a)). (c) Profiles of pattern amplitude A = maxx(B) − minx(B) along ridge
(red) and valley (blue) for a decreasing (solid) and increasing (dotted) at fixed
σ = 2.5. The shaded regions in (b) and (c) indicate values of a where the one-
dimensional approximation predicts patterns to exist on the ridge (red) and in
the valley (blue). Parameters: m = 0.45, v = 10, k0 = 2π/50.

where infiltration and transpiration functions are given by

I = αH
B + qf

B + q
, Gw = WB(1 + ηB)2 (9)

and the elevation function is

ζ = v (x+ σ cos(k0y)) (10)

The parameter values used for the simulations are: Db = 1, Dh = 10, v = 50,
ν = 3.33, ρ = 0.95, m = 1.0, γ = 16.66, α = 33.3, q = 0.05, f = 0.1, η = 3.5.

Figure 4 summarizes the results of these simulations carried out on a two-
dimensional domain in the (p, σ)-plane. The patterns generated from the simu-
lation, once classified in terms of ridge/valley vegetation state, reveals a qualita-
tively similar parameter space structure as seen for the topographically extended
Klausmeier model in Fig. 3. While we do not present numerical continuation
results of a one-dimensional Gilad model, the structure of the equations allows
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Figure 4: Simulation results based on a local approximation to the Gilad model
using an idealized terrain consisting of a periodic array of ridges and valleys
aligned along a hillslope. The precipitation level is characterized by p and
the terrain curvature is parametrized by σ. Left panel: Colors indicate the
ridge/valley state observed from numerical simulation for a given precipitation
p and terrain curvature σ. Blue: B/P, Red: P/U, Purple: P/P, and Yellow: B/U
or U/U. Right Panels: Example biomass profiles for pattern types appearing in
the simulation.

us to interpret terrain curvature as effectively changing water loss rate in the
equation for surface water H in a similar way as was done for the equation
for water W in the Klausmeier model. Because the surface water is diverted
from ridges and accumulates in valleys, we see an increased infiltration and thus
increased level of soil moisture in valleys relative to ridges.
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