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S1. DERIVATION OF GOVERNING EQUATIONS

In this section we derive the full equations of motion for arbitrary R0/l. The rotors on the left and right hand side
of Fig. 1a are referred to as 1 and 2 respectively. We use the centre of the circular orbit of rotor 1 as the origin of
reference. The polar unit vectors for external and internal rotors (1 and 2) are given by

er1,2 = (cosφ1,2, sinφ1,2),

eφ1,2
= (− sinφ1,2, cosφ1,2),

wr1,2 = (cos(φ1,2 ± θ), sin(φ1,2 ± θ)),
wφ1,2

= (− sin(φ1,2 ± θ), cos(φ1,2 ± θ)).

(S1)

The equations for rotor 1 will be derived explicitly, and the corresponding equations for rotor 2 obtained by symmetry.
The two internal rotors (see Fig. 1a) are connected by an anisotropic spring of stiffness (kx, ky) and equilibrium length
(l, 0). The force exerted by internal rotor 2 on internal rotor 1 through this spring is

fx = kxs(cos(φ2 − θ)− cos(φ1 + θ)),

fy = kys(sin(φ2 − θ)− sin(φ1 + θ)).
(S2)

In polar coordinates, we are only interested in the tangential force as the there is no radial freedom for the internal
rotors in the model.

fφ1
= (wφ1

· ex)fx + (wφ1
· ey)fy = −fx sin(φ1 + θ) + fy cos(φ1 + θ). (S3)

Substituting Eq. (S2) into Eq. (S3) yields

fφ1 = (kx + ky)s
[
G(φ1 + θ, φ2 − θ)−G(φ1 + θ, φ1 + θ)], (S4)

where for angles a and b,

G(a, b) =
1

2

ky − kx
kx + ky

sin(a+ b)− 1

2
sin(a− b). (S5)

To obtain the governing equations of the system, the following assumptions are made:

1. The torque of the system is balanced.

2. The radial force of the system is balanced for each rotor.

This essentially assumes that the system can respond to the external force instantaneously and reach the equilibrium.
The motion of the external rotors create hydrodynamic disturbances which are modelled as Stokeslets in an unbounded
fluid [1]. To express the Stokeslet flow field produced by external rotor 2, but located at external rotor 1, we define
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the effective Stokeslet strength f , which is proportional to the velocity of external rotor 2. The relative positions of
the external rotors is given by r12 = r1 − r2.

f =
3a

4
R2φ̇2eφ2 +

3a

4
Ṙ2er2

= (−l +R1 cosφ1 −R2 cosφ2)ex + (R1 sinφ1 −R2 sinφ2)ey.

4

3a
f · r12 = l(R2φ̇2 sinφ2 − Ṙ2 cosφ2) +R1Ṙ2 cos(φ1 − φ2) +R1R2φ̇2 sin(φ1 − φ2)−R2Ṙ2.

r2
12 = l2 − 2l(R1 cosφ1 −R2 cosφ2) +R2

1 +R2
2 − 2R1R2 cos(φ1 − φ2).

(S6)

(1) Torque Balance

The torque balance for the overdamped rotor 1 system is similar to [1], but with an additional term. The
internal driving force from the flagellar motors is F(1,2)

int = ζR0ω1,2.

R1φ̇1 − eφ1
·
(

f

r12
+

r12(f · r12)

r3
12

)
= R0ω1 +

sfφ1

ζR1
. (S7)

The LHS of Eq. (S7) can be expanded using Eq. (S6) to obtain

R1φ̇1 −
3a

4r12

[
M+

12A
+
12

r2
12

+R2 cos(φ1 − φ2)

]
φ̇2 −

3a

4r12

[
M+

12B
+
12

r2
12

+ sin(φ2 − φ1)

]
Ṙ2. (S8)

The equations for rotor 2 can be obtained by swapping the labels (1 and 2) and changing the sign of l. Here
we make use of the translational invariance property of the system. This is equivalent to translating the whole
system horizontally by l such that the orbit centre of rotor 2 coincides with the origin of the reference frame

R2φ̇2 −
3a

4r12

[
M−21A

−
21

r2
12

+R1 cos(φ2 − φ1)

]
φ̇1 −

3a

4r12

[
M−21B

−
21

r2
12

+ sin(φ1 − φ2)

]
Ṙ1, (S9)

where

M±ij = ±l sinφi +Rj sin(φi − φj),
A±ij = ±lRj sinφj +RiRj sin(φi − φj),
B±ij = ∓l cosφj +Ri cos(φi − φj)−Rj .

(S10)

(2) Radial Force Balance

Similarly, with the external spring of stiffness λ, the radial force balance is given by the expression

Ṙ1 − er1 ·
(

f

r12
+

r12(f · r12)

r3
12

)
= −λ

ζ
(R1 −R0). (S11)

Although the internal rotors contribute indirectly, the above equation does not involve an explicit contribution
from their motion. Using Eq. (S6) we can expand the LHS of Eq. (S11)

Ṙ1 −
3a

4r12

[
N+

12A
+
12

r2
12

+R2 sin(φ1 − φ2)

]
φ̇2 −

3a

4r12

[
N+

12B
+
12

r2
12

+ cos(φ1 − φ2)

]
Ṙ2. (S12)

By the same symmetry argument, we obtain the radial equation for rotor 2

Ṙ2 −
3a

4r12

[
N−21A

−
21

r2
12

+R1 sin(φ2 − φ1)

]
φ̇1 −

3a

4r12

[
N−21B

−
21

r2
12

+ cos(φ2 − φ1)

]
Ṙ1, (S13)

where

N±ij = ∓l cosφi +Ri −Rj cos(φi − φj). (S14)
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From Eqs. (S8)-(S9) and Eqs. (S12)-(S13), the governing equations are therefore

R1φ̇1 −
3a

4r12

[
M+

12A
+
12

r2
12

+R2 cos(φ1 − φ2)

]
φ̇2 −

3a

4r12

[
M+

12B
+
12

r2
12

+ sin(φ2 − φ1)

]
Ṙ2 = R0ω1 +

sfφ1

ζR1
,

R2φ̇2 −
3a

4r12

[
M−21A

−
21

r2
12

+R1 cos(φ2 − φ1)

]
φ̇1 −

3a

4r12

[
M−21B

−
21

r2
12

+ sin(φ1 − φ2)

]
Ṙ1 = R0ω2 +

sfφ2

ζR2
,

Ṙ1 −
3a

4r12

[
N+

12A
+
12

r2
12

+R2 sin(φ1 − φ2)

]
φ̇2 −

3a

4r12

[
N+

12B
+
12

r2
12

+ cos(φ1 − φ2)

]
Ṙ2 = −λ

ζ
(R1 −R0),

Ṙ2 −
3a

4r12

[
N−21A

−
21

r2
12

+R1 sin(φ2 − φ1)

]
φ̇1 −

3a

4r12

[
N−21B

−
21

r2
12

+ cos(φ2 − φ1)

]
Ṙ1 = −λ

ζ
(R2 −R0),

(S15)

where fφ2 is fφ1 in Eq. (S4) but with the exchange φ1 + θ ↔ φ2 − θ.

The set of governing equations is non-linear, and it is useful to simplify the system while preserving some of its
important features. One way is to take the small hydrodynamic limit of Eq. (S15), i.e. as l � R0, ignore O(R1,2/l).
Under this assumption, we obtain Eq. (1) in the paper. If the timescale for changes in σ = φ1 + φ2 is long compared
to the timescale for δ = φ1 − φ2 (as is the case in section III), the leading order equation (Eq. (5)) for the phase sum
σ can be obtained by summing the leading order contributions from each term in the equations for φ1 and φ2. This
gives the hydrodynamic interaction term in [1] plus the leading order term from the anisotropic spring interaction,
and is shown in Eq. (4) of the main paper.

This model has the advantage that it can be easily generalized so that the internal basal coupling involves both
the phase and amplitude of the external rotors. One possible way is to enable radial freedom to the internal rotors,
which can be coupled with the amplitude of the external oscillators via a larger spring that connects the two rotors.
However, it can be shown that under the assumptions that (i) the internal spring constant is stiff compared to the
sum of external and large spring constants, and (ii) the internal rotor radius is small compared to the external rotor
radius, this internal radial freedom does not contribute to the leading order dynamics in Eq. (5).

S2. DERIVATION OF NEXT ORDER GEOMETRIC HIGHER ORDER TERM

In this section, we present the derivation of next-to-leading order term in R0/l in Eqs. (6)-(7). We aim at geometric
higher order terms (O(R/l)) in the radial equation for R1 in Eq. (S15). The case for R2 can be obtained by symmetry.
Since we are interested in the leading order DC component of R1 at equilibrium, we can drop the term proportional
to Ṙ, in which, by taking derivative, the DC component becomes zero and the oscillatory components remain. Thus
the radial equation simplifies to

− 3a

4r12

[
N+

12A
+
12

r2
12

+R2 sin(φ1 − φ2)

]
φ̇2 = −λ

ζ
(R1 −R0). (S16)

From section S1, recall the definitions for r12, A±ij , N
±
ij in Eq. (S6), (S10) and (S14). We set R1 = R2 = R0 in those

expressions by taking the leading order DC component of radius (assume the radius R1 is dominated by R0 and next
order is small), then they become

r2
12 = l2 − 2lR0(cosφ1 − cosφ2) + 2R2

0(1− cos δ),

A+
12 = lR0 sinφ2 +R2

0 sin δ,

N+
12 = −l cosφ1 +R0(1− cos δ).

(S17)
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Expanding 1/r3
12 and 1/r12 using Taylor series yields

1

r3
12

=
1

l3

[
1−

(
2R0

l
(cosφ1 − cosφ2)− 2R2

0

l2
(1− cos δ)

)]− 3
2

=
1

l3

(
1 +

3R0

l
(cosφ1 − cosφ2)− 3R2

0

l2
(1− cos δ) +

15R2
0

2l2
(cosφ1 − cosφ2)2 +O

(
R3

0

l3

))
,

1

r12
=

1

l

[
1−

(
2R0

l
(cosφ1 − cosφ2)− 2R2

0

l2
(1− cos δ)

)]− 1
2

=
1

l

(
1 +

R0

l
(cosφ1 − cosφ2)− R2

0

l2
(1− cos δ) +

3R2
0

2l2
(cosφ1 − cosφ2)2 +O

(
R3

0

l3

))
.

(S18)

The terms of order O(R3/l3) in Eq. (S18) are dropped. Next we make note of the following identity for later
convenience:

(cosφ1 − cosφ2)2 = 1 + cosσ(cos δ − 1)− cos δ. (S19)

We now consider the terms on the LHS of Eq. (S16) one by one. First we look at the second term, utilising the Taylor
expansion in Eq. (S18)

R0
sin δ

r12
≈ R0 sin δ

l

(
1 +

R0

l
(cosφ1 − cosφ2)− R2

0

l2
(1− cos δ) +

3R2
0

2l2
(cosφ1 − cosφ2)2

)
. (S20)

From here on we use the fact that when the intrinsic frequencies ω1 and ω2 are dominating the dynamics, they have
similar magnitude but opposite sign (we use ω1 = −ω2 = 100π rad·s−1 in this paper), and the rate of change of
δ ∼ 2ω1t is much faster than σ ∼ 0. Under the time scale that is large for changes in δ but small for changes in σ,
the resulting average of sin δ, cos δ sin δ, sin δ cosφ1,2 are all zero and we can treat any function of σ as approximately
constant. Therefore we have 〈

R0
sin δ

r12

〉
≈ 0.

We need only focus on the other term on the LHS in Eq. (S16)

N+
12A

+
12

r3
12

≈ (−l cosφ1 +R0(1− cos δ))(lR0 sinφ2 +R2
0 sin δ)

1

l3

(
1 +

3R0

l
(cosφ1 − cosφ2)− 3R2

0

l2
(1− cos δ) +

15R2
0

2l2
(cosφ1 − cosφ2)2

)
.

(S21)

By similar argument above, we may drop the terms multiplied by sin δ as they average to 0. So〈
N+

12A
+
12

r3
12

〉
≈ R0

l
sinφ2

(
− cosφ1 +

R0

l
(1− cos δ)

)
(

1 +
3R0

l
(cosφ1 − cosφ2)− 3R2

0

l2
(1− cos δ) +

15R2
0

2l2
(cosφ1 − cosφ2)2

) (S22)

Multiplying term by term, notice the first term is − sinφ2 cosφ1 = (sin δ − sinσ)/2, as usual we can drop sin δ on
average. Therefore,〈

−R0

2l
sinσ

(
1 +

3R0

l
(cosφ1 − cosφ2)− 3R2

0

l2
(1− cos δ) +

15R2
0

2l2
(cosφ1 − cosφ2)2

)〉
≈ −R0

2l
sinσ

(
1 +

9R2
0

2l2
− 15R2

0

2l2
cosσ

)
.

(S23)

For the second multiplication, we note that sinφ2 oscillates slower than cos δ and cos2 δ and we always drop O(R4/l4).
So on average we only need to focus on〈

R2
0

l2
sinφ2(1− cos δ)

(
3R0

l
(cosφ1 − cosφ2)

)〉
=

〈
3R3

0

l3
(1− cos δ)(sinσ − sin(2φ2))/2

〉
=

9R3
0

4l3
sinσ.

(S24)
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Combining the DC contributions from Eq. (S23) and (S24), we obtain the net contribution

−R0

2l
sinσ

(
1− 15R2

0

2l2
cosσ

)
. (S25)

Substituting this back to Eq. (S16), we have the result for the next-to-leading order in R0/l for average radial dynamics
(take φ̇2 ≈ ω2 at leading order)

R1 = R0 −R0
ρζω2

λ

(
1− 15R2

0

2l2
cosσ

)
sinσ. (S26)

The higher order term has a direct impact on the leading order equation Eq. (5). By Taylor expanding the radius
at denominator of φ̇1,2 = R0ω1,2/R1,2 + · · · and taking the first order correction, we arrive at the modification for σ
shown in Eq. (6).

S3. PREDICTION OF ROTOR’S PHASE SPEED

Assume the system (θ = 0 for simplicity) is in equilibrium and both oscillators are beating, hence σ is constant and
δ follows

δ̇ = A−B sin δ, (S27)

where |A| > |B|. This can be solved by substitution and yields

tan

(
δ

2

)
=

∆ tanu+B

A
, (S28)

where ∆ =
√
A2 −B2 and u = ∆t/2 + c for some constant c. From this, we find that

sin δ =
∆
A sin(2u) + 2BA cos2 u

1 + B2

A2 cos(2u) + ∆B
A2 sin(2u)

. (S29)

Integrating Eq. (S29) over a period and taking the time average, we arrive at

〈sin δ〉 =
A−
√
A2 −B2

B
=

B

2A
+O

(
B3

A3

)
. (S30)

If we look back to Eq. (3) for σ and δ, we can substitute the corresponding A and B and obtain the leading order
phase speed for φ1 (for φ2 it is opposite sign). In either the AP or IP state this is given by

〈φ̇1〉 = 〈ω1 −
s2

2ζR2
0

(k+ sin δ + k− cosσ sin δ)〉

≈ ω − ω

2

(
s2

2ζωR2
0

)2

(k+ + k− cosσ)2

(S31)

where (k+, k−) = (ky + kx, ky − kx). Equation (S31) also suggests the amplitude of instantaneous oscillation of phase
speed is given by | s2

2ζR2
0

(k+ + k− cosσ) | and the oscillation always crosses the intrinsic speed ω. The implications
of this formula are that in AP (σ = 0) and IP (σ = π), the phase speed correction is proportional to k2

y and k2
x

respectively. Physically in AP and IP states, the springs in the x and y directions have achieved their equilibrium
lengths, and thus do not contribute to the dynamics. Provided kx (in IP) > ky (in AP), average phase speed is lower
in IP but accompanies a larger oscillation. If kx is fixed and ky is changed to achieve transition, the phase speed in
the IP state is lower than in the AP state. However, if ky is fixed and kx is changing, the situation is reversed.

Equations (S30) and (S31) compare very well with numerical simulations. For kx = 0.015 Nm−1, ky = 0.006 Nm−1,
and other parameters as in Table I, the estimate from simulations yields phase speed 42.071 Hz. Equation (S30)
predicts 42.071 Hz, and the leading order gives 42.070 Hz. For kx = 0.008 Nm−1 and ky = 0.015 Nm−1, simulations
predict 34.672 Hz, Eq. (S30) gives 34.672 Hz and the leading order gives 37.022 Hz.
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FIG. S1. Instantaneous phase speed profile with hydrodynamics present. Black bold lines indicate the average phase speed.
(left) kx = 0.005 Nm−1 and ky = 0 Nm−1 in AP. (right) kx = 0.005 Nm−1 and ky = 0.02 Nm−1 in IP.

We can apply similar reasoning to the case in Eq. 1, in which the rotors are also coupled through hydrodynamic
interactions. The leading order for δ, analogous to σ, is given by

δ̇ = 2ω + 2ρω cosσ +O (ρω sin δ) + the internal coupling terms for δ in Eq. (3). (S32)

Applying Eq. (S30) using this modified definition for A and B gives the phase speed for φ1 in AP or IP with
hydrodynamic interactions present in the limit R0 � l:

〈φ̇1〉 ≈ ω + ωρ cosσ − ω

2

(
s2

2ζωR2
0

)2

(k+ + k− cosσ)2. (S33)

The expression consists of the basal coupling term in Eq. (S31), together with a hydrodynamic correction. This
hydrodynamic correction enhances the phase speed for the AP state and reduces it in the IP state, as expected
physically [2].

For the physical parameters used in the paper (Table I), the basal coupling term is dominating Eq. (S33) as ρ ≈ 0.02
is small. If the system is achieving a transition in synchronization states (IP ↔ AP) through changes in just one of
(kx, ky), to be consistent with the experimental observation of significant changes in phase speed, the model suggests
ky is the primary variable basal coupling.

In the simulations presented in the paper (with hydrodynamics), where we only vary ky, we observed the phase
speed is lower in the IP state compared to the AP state. For parameters used in Table I and kx = 0.005 Nm−1,
the phase speed reduction between ky = 0 Nm−1 and ky = 0.02 Nm−1 is about 12.7% (see Fig. S1). The formula
Eq. (S33) predicts a reduction of about 13.6%.

S4. EXISTENCE OF LARGER EXCURSION MODES

In section IV of the main paper, Fig. 5a,b demonstrates that for intermediate values of ky, the phase sum σ(t)
oscillates with large amplitude but zero mean, on a timescale that is long compared to the individual rotor period
(see panel (iii)). Figure S2 illustrates the effect of increasing the radius, a, of the model cilium. The chosen value
ky = 7.65×10−3 Nm−1 is just below the symmetry breaking threshold. For these parameters, the phase sum oscillates
between ≈ π and −π with a period of ≈ 12 beats. While 〈σ(t)〉 = 0 would suggest an AP state, this system actually
spends considerable time close to IP states (σ = ±π), with rapid swings past the σ = 0 states.
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FIG. S2. Deterministic switching between IP and AP states. (a) Phase sum σ(t) = φ1(t) + φ2(t) and (b) external rotor radii,
Ri(t). Parameters are as in Table I, except with a = 1 µm, kx = 5× 10−3 Nm−1, and ky = 7.65× 10−3 Nm−1.

S5. COEXISTENCE OF SYNCHRONIZED STATES

Figure 5c,e in the main text shows that for l ≤ 35 µm, the full system displays a discontinuous transition in 〈σ(t)〉
as ky is increased. For each of the numerical simulations used to produce Fig. 5c,e, the same initial conditions were
used, (φ1, φ2) = (0, π/2). In this section, we further examine the nature of this discontinuity, and explore the capacity
for the system to support alternative values of 〈σ(t)〉 for the same (kx, ky).

For the Chlamydomonas-like separation of l = 15µm, we start with a value of ky = 6.5 × 10−3 Nm−1, for which
〈σ(t)〉 converges to zero (AP). Once the steady state is achieved, we gradually increase the value of ky, on a timescale
much longer than all other timescales in the system. The system continues to support AP synchronization until ky '
6.7× 10−3 Nm−1, at which point a discontinuous jump brings the system to another stable point with 〈σ(t)〉 = ±0.32
(see Fig. S3). Similarly, starting instead at ky = 6.8× 10−3 Nm−1 along the positive 〈σ(t)〉 branch, we can gradually
decrease the ky value keeping on the same branch until ky ' 6.6× 10−3 Nm−1, at which point the average phase sum
jumps to 〈σ(t)〉 = 0. As Fig. S3 illustrates, there is clearly a small but finite interval in ky where the system displays
3-state multi-stable dynamics (symmetric negative branch of 〈σ(t)〉 not shown). In this small region, the relative sizes
of the basins of attraction for the different states depend on the value of ky.

The region of parameter space in which this coexistence occurs is relatively small compared to the overall transition
zone presented in Fig. 5c (6.6 × 10−3 Nm−1 < ky < 17 × 10−3 Nm−1). Moreover, the width of the coexistence
zone diminishes with increasing separation l and eventually disappears for 35µm < l < 50µm, when the bifurcation
changes nature. As the 3-states coexistence region is narrow, it seems more likely that changes in the synchronization
state would be mediated through underlying changes in the basal body stiffness, as outlined in the main text, rather
than stochastic jumping between the coexisting states for a fixed ky.

FIG. S3. Bifurcation diagram showing 〈σ(t)〉 as a function of ky, for l = 15 µm and kx = 5× 10−3 Nm−1. Symmetric negative
〈σ(t)〉 branch not shown. All other parameters are as in Table I.
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