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Supplementary Text 
 
S1. Data sources and exploratory spatio-temporal analysis 
 
Data sources: time series data 
 
The components of data that are used in this analysis are collated from a variety of 
sources, with the data structure color-coded in Table S1 (the dataset is available as 
supplementary material). The surveillance data are from the National Epidemiological 
Surveillance for Infectious Diseases (NESID) system, maintained at Japan’s National 
Institute of Infectious Diseases (NIID). 
 
The weekly number of syndromic HFMD cases per sentinel site is reported through 
NIID’s Infectious Diseases Weekly Report (IDWR) (red cells in Table S1). The number 
of sites in the national sentinel network (approximately 3,000 pediatric clinics or 
hospitals with a pediatric ward) (yellow cells in Table S1) was available by year from 
NIID, reference [1], and IDWR. By definition, syndromic HFMD cases per sentinel site is 
the total number of syndromic HFMD cases reported for a given week across all 
sentinel sites, divided by the total number of sentinel sites. 
 
The weekly number of virologic counts of EV-A71 and CV-A16, available from 1982, is 
reported through NIID’s Infectious Agents Surveillance Report (IASR) (green cells in 
Table S1). The weekly numbers of virologic counts of all other serotypes are also from 
IASR (blue cells in Table S1), which were available beginning in 2000. In addition to EV-
A71 and CV-A16, these are separated into CV-A10, Echoviruses, Coxsackievirus B, 
and “Other CV-A” (presumably CV-A6), shown in Figure S2. Since the addition of PCR 
as a reporting item for virus detection in 2000, the proportion of detections by PCR 
(instead of virus culture) has increased (see Figure 4 in [2]). 
 
The monthly number of births and population size in Japan (purple cells in Table S1) 
was obtained from the Statistics Bureau of the Japanese Ministry of Internal Affairs and 
Communications (http://www.stat.go.jp) and interpolated to the weekly temporal scale 
(Figure S1). 
 
Data sources: literature on virologic evidence of asymmetry 
 
We reviewed published studies for evidence to determine if our proposed hypothesis of 
an asymmetric cross-protection between EV-A71 and CV-A16 was consistent with the 
virologic literature. Publications were identified using the keywords of “Enterovirus A71”, 
“Coxsackievirus A16”, and “cross-reactivity”, “cross-neutralization”, “cross-protection”, 

http://www.stat.go.jp/
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“cross-immunity”, or “vaccination” in PubMed. We then looked at studies either cited in 
or citing the initially identified publications, and supplemented our findings with 
additional relevant literature collated by co-authors. 
 
Exploratory spatio-temporal analysis 
 
In Figure S3 we plot the annual virologic notifications of each serotype between 2000 
and 2015, along with total annual syndromic HFMD notifications. We observe a 
negative feedback between EV-A71 and CV-A16 notifications (upper left scatterplot), as 
well as a positive association between CV-A6 notifications and HFMD, which is in line 
with the documented recent large increase in HFMD cases due to this serotype [3]. We 
also looked for empirical signatures of an interaction between EV-A71 and CV-A6, as 
well as between CV-A16 and CV-A6, in Figure S4 (following the methods behind Figure 
4 in the main text, also see Section S3). This analysis was necessarily limited to the 
time period between 2000 and 2015. Generally, the annual epidemic size of CV-A6 did 
not modify the annual epidemic timing of EV-A71 or CV-A16. The exception was 
between the three ‘large’ years of CV-A6 (2011, 2013, and 2015, shown in blue on 
Figure S3 and Figure S4C) and EV-A71 epidemic timing. 
 
As a side note: there have been reports of recent genetic changes in CV-A6 in China 
and Japan, though the sample sizes have been small [4,5]. Previously, CV-A6 was 
mainly a cause of herpangina [3], but is increasingly associated with HFMD followed by 
onychomadesis (nail shedding), as well as large blisters extending to the legs and 
buttocks [6,7]. CV-A6 infection in Japan is concentrated in young children but the age 
profile of CV-A6 infection outside of the Asia-Pacific region is older [8,9]. 
 
Since the clearest interactions are between EV-A71 and CV-A16, and since the counts 
of non-EV-A71, non-CV-A16 serotypes are relatively low, we ultimately chose to focus 
our analysis on the dynamics of these two serotypes. Starting in 2000, the counts of the 
other serotypes are taken into account when estimating the probability of a virologically 
tested HFMD case being caused by a specific serotype by week (see Section S2). As 
stated in the main text, we focused on the time series using two different start years for 
inference: 1997 (primary) and 2000 (secondary). The year 1997 was the start of the 
current wave of HFMD outbreaks in the Asia-Pacific region, and also where the wavelet 
signals yield clearest multi-annual cycles of EV-A71 (see Section S3). The year 2000 
was when the sentinel reporting system was upgraded and data on all causative HFMD 
serotypes became available, which lends additional information to the models. 
However, the older (pre-2000) data is qualitatively consistent with the dynamic signature 
of the more recent (post-2000) data. 
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The virologic IASR data disaggregates serotype reports by the 47 prefectures of Japan 
(aggregated by year). In the spatial virologic data from 2000 to 2015, we observe spatial 
synchrony in the dynamics of EV-A71 (Figure S5) and CV-A16 (Figure S6) across the 
country. The syndromic IDWR data also disaggregates HFMD reports by prefecture and 
by week. In the spatial syndromic HFMD data from 2000 to 2015, we observe strong 
overall correlation in within-year epidemic timing (Figure S7, with the heat map sorted 
by data on prefecture-level population size in 2005, from the Statistics Bureau of the 
Japanese Ministry of Internal Affairs and Communications). We note that the dynamics 
in Okinawa, which is geographically isolated from the four main islands of Japan, are 
not highly correlated with Tokyo (the capital), Osaka (the second most populated 
prefecture), or the rest of the aggregated country (Figure S8). The twice-yearly peaks of 
cases reported in Okinawa in 2002 and 2011 echo patterns of HFMD observed in 
southern provinces of China [10], perhaps due to their comparable climatic conditions. 
 
We also estimated the non-parametric spatial correlation function of syndromic HFMD 
notifications between prefectures, using the longitude and latitude of the capital city of 
each prefecture as its spatial location. We used 1,000 resamples to generate the 
bootstrap null distribution, and estimated the regional average correlation to be 0.539. 
We plot the estimated correlation function against distance in Figure S9, which indicates 
high correlation of nearby prefectures and a marked decline over most of the 
longitudinal extent of country. This was done using the Sncf function in the ncf package 
in the R statistical software. These cursory analyses indicate that the dynamics in large 
prefectures are highly correlated (i.e., more spatially correlated as the classic dataset of 
pre-vaccination measles incidence in 954 towns and cities in England and Wales, see 
Figure 4 in [11]) and suggest that aggregate patterns adequately capture the spatial 
dynamics of HFMD in more populated prefectures. For the rest of this analysis, we 
proceed with aggregate epidemiological models. 
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Cumulative 
week 

Year Week of 
year 

Syndromic 
HFMD 

cases per 
sentinel 

site 

Number 
of 

sentinel 
sites 

EV-A71 
virologic 
counts 

CV-A16 
virologic 
counts 

CV-A6 
virologic 
counts 
(“Other 
CV-A”) 

All other 
HFMD 

serotype 
virologic 
counts 

Births 
(𝑩𝑩𝒕𝒕) 

Population 
(𝑵𝑵𝒕𝒕) 

1 1982 1     NA NA   
2 1982 2     NA NA   
3 1982 3     NA NA   

⋮ ⋮ ⋮     ⋮ ⋮   

939 1999 52     NA NA   
940 2000 1         
941 2000 2         

⋮ ⋮ ⋮         

1773 2015 52         
1774 2015 53         

Table S1: Data structure by week, 1982 to 2015. NA: not available. 
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Figure S1: Demographic data of Japan, 1982 to 2015. (A) Population size, by week. 

(B) Live births, by week. 
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Figure S2: Weekly time series of all counts of HFMD-causing enteroviruses, 2000 
to 2015. (A) EV-A71. (B) CV-A16. (C) CV-A10. (D) Echoviruses. (E) Coxsackievirus B. 

(F) “Other CV-A” (presumably CV-A6). Note that the y-axis range varies by panel. 
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Figure S3: Scatterplot matrix of causative serotypes associated with HFMD, 2000 
to 2015. Counts of raw EV-A71 (each point corresponds to a year), CV-A16, CV-A10, 
Echoviruses, Coxsackievirus B, “Other CV-A” (presumably CV-A6), and total reported 
HFMD cases. The lowess fit to each scatterplot is in red. Points corresponding to large 

years of CV-A6 notifications (i.e., 2011, 2013, and 2015) are in blue. 
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Figure S4: Empirical comparisons between the two focal serotypes (EV-A71 and 

CV-A16) and CV-A6, 2000 to 2015. (A) Annual detections of raw EV-A71 (y-axis) 
against raw CV-A6 (x-axis, log scale). (B) Annual detections of raw CV-A16 (y-axis) 

against raw CV-A6 (x-axis, log scale). (C) Center of gravity (COG, in weeks) of yearly 
EV-A71 epidemics stratified by size of yearly CV-A6 epidemics (colors correspond to 

those in panel (A)). (D) COG of yearly CV-A16 epidemics stratified by size of yearly CV-
A6 epidemics. (E) COG of yearly CV-A6 epidemics stratified by size of yearly EV-A71 
epidemics (colors correspond to lower and upper halves of annual counts). (F) COG of 

yearly CV-A6 epidemics stratified by size of yearly CV-A16 epidemics. 
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Figure S5: Virologic counts of EV-A71 by year and by prefecture, 2000 to 2015. (A) 
Time series of EV-A71 counts aggregated across all of Japan, by week. (B) Heat map 

of EV-A71 counts, by year and by prefecture (𝑛𝑛 = 47). Prefectures are sorted in 
descending order of population size in 2005, from largest (top) to smallest (bottom). 
Color indicates the binned annual count (values: 0, 1 to 5, 6 to 10, 11 or greater). 
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Figure S6: Virologic counts of CV-A16 by year and by prefecture, 2000 to 2015. (A) 
Time series of CV-A16 counts aggregated across all of Japan, by week. (B) Heat map 

of CV-A16 counts, by year and by prefecture (𝑛𝑛 = 47). Prefectures are sorted in 
descending order of population size in 2005, from largest (top) to smallest (bottom). 
Color indicates the binned annual count (values: 0, 1 to 5, 6 to 10, 11 or greater). 
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Figure S7: Reported syndromic HFMD cases by week and by prefecture, 2000 to 
2015. (A) Time series of HFMD reports aggregated across all of Japan, by week. (B) 

Heat map of HFMD reports, by week and by prefecture (𝑛𝑛 = 47). Prefectures are sorted 
in descending order of population size in 2005, from largest (top) to smallest (bottom). 

Each thin bar represents a week, and color indicates the notification count. 
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Figure S8: Reported syndromic HFMD by week for selected prefectures, 2000 to 
2015. (A) Tokyo. (B) Osaka. (C) All prefectures except Okinawa. (D) Okinawa. Note 

that the y-axis range varies by panel. 
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Figure S9: Non-parametric spatial correlation function of HFMD in Japan, 2000 to 
2015. The 95% confidence envelope is the blue polygon. The red dashed line indicates 

the regional average correlation (the regional average correlation of 𝑦𝑦 = 0.539 is 
reached at approximately 𝑥𝑥 = 542 km). The black dashed line indicates zero correlation. 
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S2. Inferring serotype counts, from serotype proportions and syndromic counts 
 
Inferring weekly HFMD counts attributable to each serotype for 1982 to 2015 involves a 
two-step process: first, estimating the probability of a virologically tested HFMD case 
being caused by a specific serotype by week, and second, multiplying this by the 
number of syndromic HFMD counts by week. The main challenges here are that there 
are multiple serotypes that cause HFMD, and that their probabilities and counts are both 
likely to be temporally autocorrelated. Due to the lack of additional virologic data, we 
assumed that EV-A71 and CV-A16 were the only causative serotypes from 1982 to 
1999; from 2000 to 2015, we included counts of all available serotypes. 
 
We tested many parameterizations of a temporal kernel, and ultimately compare three 
representative ways of estimating the weekly probability of a virologically tested HFMD 
case being caused by a specific serotype: (1) a simple moving average over a 
symmetric 3-week window around the estimation week 𝑡𝑡, with equal weights; (2) a 
moving average over a symmetric 11-week window around the estimation week, with 
inverse powers of 2 weights (e.g., 1/32, 1/16, 1/8, 1/4, 1/2, 1, 1/2, 1/4, 1/8, 1/16, 1/32); 
and (3) a moving average over a symmetric 11-week window around the estimation 
week, with Gaussian kernel weights (see Table S2 and Figure S10G). 
 
We would expect that taking direct weekly proportions, as well as method (1), would 
produce estimates with the most noise: this is because weekly virologic sample sizes 
can be quite low or zero due to logistical constraints, but given the endemicity of 
syndromic HFMD during this entire time period, a week with no virologically confirmed 
cases is unlikely to reflect the true transmission process (see below). We used each 
smoothing method to first calculate weekly serotype-specific counts using the weights, 
and then normalized these counts each week to produce serotype-specific probabilities. 
Note that the denominator consists of EV-A71 and CV-A16 from 1982 to 1999, and all 
serotypes afterwards. 
 
We used 30 years of simulated time series data of EV-A71 and CV-A16 from the two-
serotype TSIR model with cross-protection (heavily down-sampled using a reporting 
rate of 0.05%, see Section S6) to test these three ways of recovering weekly 
proportions. We found that the latter two methods (‘Linear’ and ‘Gaussian’ in Figure 
S10, corresponding to methods (2) and (3)) performed qualitatively better than the 
simple moving average (‘Simple’, corresponding to method (1)) at estimating the true 
proportions. In Figures S10A–F, each point in each scatterplot represents a week, 
where the x-axis is the true proportion of that serotype and the y-axis is the estimated 
proportion using method (1) in red, method (2) in green, and method (3) in blue. 
Methods (2) and (3) both yield high correlations with low variance. We ultimately 
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selected method (3) for this analysis because it strikes a good balance between taking 
advantage of the temporal autocorrelation of the data and assigning less weight to 
observations farther away in time (i.e., method (2) assigns greater weight to more distal 
weeks than method (3) does, see Figure S10G). Lastly, we took syndromic HFMD 
counts to be the number of syndromic HFMD cases per sentinel site multiplied by the 
total number of sentinel sites. 
 
These are simple methods to estimate serotype proportions, and there have been 
recent methodological developments that leverage syndromic and under-sampled 
virologic data to answer similar questions (e.g., [12]). Despite minor discrepancies 
among our three methods here in recovering the true underlying probabilities, we found 
that they all lead to very similar values of weekly serotype-specific incidence since this 
is, in line with our expectations, largely driven by the weekly counts of syndromic 
HFMD. The syndromic data shows that HFMD is endemic in Japan (where syndromic 
cases are reported from pediatric sentinel sites), while the virologic data (for which 
specimens are collected based on convenience sampling from about 10% of the 
sentinel sites, with the number and type of samples collected being conducted on an ad 
hoc basis) has zeros that may suggest otherwise. 
 
Since we are modeling all of Japan, HFMD (and its causative serotypes) should stay 
endemic in such a large population. Therefore, the probability of infection fading out will 
be small, and re-introduction of infection from outside of the population (via immigration) 
is not necessary to sustain infection in the population. Incorporating serotype 
proportions and syndromic counts allows us to ‘preserve’ this endemicity of the HFMD 
time series by counteracting the relatively under-sampled nature of the virologic data. 
This is directly related to the benefit of incorporating numerous weeks into the 
smoothing. 
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Method Specification of weights (in R code*) 𝑹𝑹𝟐𝟐 value 
(1) Simple w = rep(1,times=3) 0.95 
(2) Linear w = 1/2^c(5:1,0,1:5) 0.97 

(3) Gaussian w = dnorm(seq(-5,5,length=11),mean=0,sd=1) 0.96 
Table S2: Three parameterizations and resulting 𝑹𝑹𝟐𝟐 of a temporal kernel to 
estimate serotype proportions. 𝑅𝑅2 value calculated by fitting a simple linear 

regression to observed and expected counts (see Figure S10). *Not normalized. 
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Figure S10: Accuracy of an HFMD case being classified as a specific serotype 
based on three parameterizations, from simulated data. (A) Observed (x-axis) 
against expected (y-axis) probabilities (𝑝𝑝) for EV-A71 using method (1) (each point 

corresponds to a week). (B) EV-A71 using method (2). (C) EV-A71 using method (3). 
(D) CV-A16 using method (1). (E) CV-A16 using method (2). (F) CV-A16 using method 

(3). (G) Weight or relative contribution (y-axis) of each week (x-axis) to the overall 
estimation for week 𝑡𝑡, for each method. 
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S3. Intrinsic (within-serotype) patterns 
 
We explored the temporal patterns independently by serotype, using a variety of 
methods. We first calculated an estimate of the autocorrelation function (ACF) between 
1997 and 2015 (our primary time period of interest for the mechanistic modeling) for 
each raw time series 𝐶𝐶𝑡𝑡 and the first difference of the time series (𝐷𝐷𝑡𝑡 = 𝐶𝐶𝑡𝑡+1 − 𝐶𝐶𝑡𝑡), to 
look at the correlations between 𝐶𝐶𝑡𝑡+1 and 𝐶𝐶𝑡𝑡, and between 𝐷𝐷𝑡𝑡+1 and 𝐷𝐷𝑡𝑡 (Figure S11), 
where 𝑡𝑡 is a time-step of one week. We see that these time series are, as expected, 
highly autocorrelated (i.e., the number of cases at time 𝑡𝑡 strongly predicts the number of 
cases at time 𝑡𝑡 + 1). There is a within-year signal of autocorrelation in both of the raw 
series, along with a noticeable three-year cyclical component in the raw and first 
differenced EV-A71 series. This was done using the acf function in the stats package in 
R, with a lag.max value of 5 years. 
 
To assess between-year temporal patterns, we then used wavelet analysis, which is a 
standard method in the ecological literature for exploring how the period component of a 
non-stationary time series varies over time [13,14]. We computed the continuous 
wavelet transform for the Morlet wavelet using data from 1982 to 2015, and plot the 
wavelet power spectra of the complete time series of EV-A71 in Figure S12 and CV-A16 
in Figure S13 as a function of period (y-axis) and time (x-axis), looking at various 
transformations of the data (square root, log + 1, log + 0.5, and raw). We see that for all 
transformations, EV-A71 has a three-year cyclical component with a strong signal 
beginning in 1997, which is the start of the inferential analysis. On the other hand, CV-
A16 is predominantly annual during this time period. This was done using the cwt 
function in the Rwave package in R, with noctave = 8 and nvoice = 16. 
 
Lastly, we compiled a suite of metrics related to epidemic timing, size, and shape for 
assessing within-year temporal patterns, for each serotype for each year between 1982 
and 2015, outlined in Table S3. We also compared these within-year serotypes patterns 
of each serotype (EV-A71 and CV-A16) to the within-year patterns of HFMD counts, 
and looked at serotype-specific epidemic metrics with a one-year lag as well. 
 
The naming convention we adopt for the variables here is: [metric] [serotype (EV or CV) 
or HFMD]; [year, if including temporality], so cog EV refers to the center of gravity of the 
EV-A71 serotype epidemic for all years between 1982 and 2015, cog EV; 𝑡𝑡0 refers to 
the center of gravity of the EV-A71 serotype epidemic at years 𝑡𝑡 = 1 to 𝑇𝑇-1 (i.e., 
computed for the years 1982 to 2014), and skew HFMD; 𝑡𝑡1 refers to the skewness of 
the HFMD epidemic at years 𝑡𝑡 = 2 to 𝑇𝑇 (i.e., computed for the years 1983 to 2015). 
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The mean center of gravity was calculated as the first moment of the probability density 
of the epidemic curve (a single year’s epidemic curve represented as a histogram with 
week on the x-axis and density on the y-axis, see Figure S14 and Figure S15). The 
center of gravity represents the mean week of infection, weighted by the weekly number 
of cases. The skewness was calculated as the third moment of the probability density of 
the epidemic curve (using the moments function in the moments package in R). 
 
Negative skewness means that the epidemic curve is skewed to the left (i.e., has a long 
left tail such that the mean week is before the median week); positive skewness means 
that the epidemic curve is skewed to the right (i.e., has a long right tail such that the 
mean week is after the median week). 95% confidence intervals (CIs) on the center of 
gravity and skewness were obtained using the normal approximation to parametric 
bootstrap distributions with 10,000 iterations, using the boot.ci function in the boot 
package in R, with type = "norm". The onset week, defined as the change point in the 
slope of the epidemic curve, was calculated by the Mann-Whitney-Pettitt change-point 
detection test as in [15], using the pettitt.test function in the trend package in R. 
 
These epidemic metrics are summarized in four scatterplot matrices, where each point 
on each scatterplot represents a year. Due to the large number of variables, we 
partitioned them into those related to serotype-specific comparisons against syndromic 
HFMD metrics without the temporal lag (Figure S16 and Figure S18), and serotype-
specific comparisons with only the temporal lag (Figure S17 and Figure S19). The 
Spearman correlation coefficients are on the upper diagonal, and scatterplots where the 
absolute value of the correlation coefficient is greater than or equal to 0.5 are marked in 
red. 
 
We observed some of the strongest correlations between metrics of the same type (i.e., 
epidemic timing or epidemic size) within EV-A71, CV-A16, and HFMD – and when 
including a temporal lag – as well as the same-type metrics between a serotype and 
HFMD (i.e., a high year of CV-A16 is associated with a high year of HFMD). We also 
observed strong positive correlations between the total number of CV-A16 counts and 
CV-A16 skewness, and between the maximum number of weekly CV-A16 counts and 
CV-A16 skewness. 
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Figure S11: Autocorrelation functions (ACF) for EV-A71 and CV-A16, 1997 to 

2015. (A) ACF (correlation on y-axis) for weekly raw EV-A71 series by time (x-axis in 
years) with a maximum lag of 5 years. (B) ACF for weekly first-differenced EV-A71 

series. (C) ACF for weekly raw CV-A16 series. (D) ACF for weekly first-differenced CV-
A16 series. 
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Figure S12: Wavelet analysis of various transformations of EV-A71, 1982 to 2015. 

(A) Raw counts of EV-A71. (B) Wavelet power spectrum of square root-transformed 
EV-A71 (x-axis is time (year), y-axis is the period (in years), color is the power 

spectrum, strong to weak (yellow-red gradient)). (C) Wavelet power spectrum of log-
transformed EV-A71 plus 1. (D) Wavelet power spectrum of log-transformed EV-A71 

plus 0.5. (E) Wavelet power spectrum of raw EV-A71. 
  



23 

 
Figure S13: Wavelet analysis of various transformations of CV-A16, 1982 to 2015. 

(A) Raw counts of CV-A16. (B) Wavelet power spectrum of square root-transformed 
CV-A16 (x-axis is time (year), y-axis is the period (in years), color is the power 

spectrum, strong to weak (yellow-red gradient)). (C) Wavelet power spectrum of log-
transformed CV-A16 plus 1. (D) Wavelet power spectrum of log-transformed CV-A16 

plus 0.5. (E) Wavelet power spectrum of raw CV-A16. 
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Epidemic timing 
(in weeks) 

Epidemic size Epidemic shape Temporality 

Center of gravity 
(cog) 

Total number of 
counts in year (sum) 

Skewness 
(skew) 

Epidemic timing, 
size, shape metrics 
with lag of 1 year 

(𝑡𝑡0 or 𝑡𝑡1)  
Peak week 

(peak) 
Maximum number of 

weekly counts in 
year (max) 

  

Onset week 
(onset) 

Raw proportion of 
EV-A71 and CV-A16 
counts that year that 
were that serotype 

(prop) 

  

Table S3: Metrics for the timing, size, and shape of an annual epidemic curve. 
Each of these metrics is applicable for either serotype-specific counts or all-cause 

HFMD, and can be extended for temporal comparisons at years 𝑡𝑡 = 1 to 𝑇𝑇-1 against 
years 𝑡𝑡 = 2 to 𝑇𝑇. Variable name in italics. 
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Figure S14: Normalized year-by-year weekly EV-A71 epidemic curve, with 95% 

confidence intervals for the center of gravity (blue line), 1982 to 2015. Year label is 
above. Note that the y-axis range varies by panel. 
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Figure S15: Normalized year-by-year weekly CV-A16 epidemic curve, with 95% 

confidence intervals for the center of gravity (blue line), 1982 to 2015. Year label is 
above. Note that the y-axis range varies by panel. 

  



27 

 
Figure S16: Scatterplot matrix of within-year metrics of EV-A71 (“EV”) and HFMD, 

without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point 
corresponds to a year), peak week, onset week, total number of counts (“sum”), 

maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts 
that year that were EV-A71 (“prop”), and skewness. Spearman correlations marked on 

upper diagonal, with coefficients over 0.5 in red. 
  



28 

 
Figure S17: Scatterplot matrix of EV-A71 (“EV”)-specific comparisons with a one-

year temporal lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point 
corresponds to a year), peak week, onset week, total number of counts (“sum”), 

maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts 
that year that were EV-A71 (“prop”), and skewness. Here, 𝑡𝑡0 refers to values computed 

for the years 1982 to 2014, and 𝑡𝑡1 refers to values computed for the years 1983 to 2015. 
Spearman correlations marked on upper diagonal, with coefficients over 0.5 in red. 
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Figure S18: Scatterplot matrix of within-year metrics of CV-A16 (“CV”) and HFMD, 

without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point 
corresponds to a year), peak week, onset week, total number of counts (“sum”), 

maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts 
that year that were CV-A16 (“prop”), and skewness. Spearman correlations marked on 

upper diagonal, with coefficients over 0.5 in red. 
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Figure S19: Scatterplot matrix of CV-A16 (“CV”)-specific comparisons with a one-

year temporal lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point 
corresponds to a year), peak week, onset week, total number of counts (“sum”), 

maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts 
that year that were CV-A16 (“prop”), and skewness. Here, 𝑡𝑡0 refers to values computed 
for the years 1982 to 2014, and 𝑡𝑡1 refers to values computed for the years 1983 to 2015. 

Spearman correlations marked on upper diagonal, with coefficients over 0.5 in red. 
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S4. Extrinsic (between-serotype) patterns 
 
We also explored the temporal patterns between the EV-A71 and CV-A16 serotypes 
(‘biotic interactions’), using a variety of methods. We first calculated an estimate of the 
cross-correlation function (CCF) between 1997 and 2015 (i.e., our primary time period 
of interest for the mechanistic modeling) between the raw time series of 𝐶𝐶𝑡𝑡,𝑖𝑖 and 𝐶𝐶𝑡𝑡,𝑗𝑗 for 
serotypes 𝑖𝑖 and 𝑗𝑗, and the first difference of the time series (𝐷𝐷𝑡𝑡,𝑖𝑖 = 𝐶𝐶𝑡𝑡+1,𝑖𝑖 − 𝐶𝐶𝑡𝑡,𝑖𝑖 and 𝐷𝐷𝑡𝑡,𝑗𝑗 =
𝐶𝐶𝑡𝑡+1,𝑗𝑗 − 𝐶𝐶𝑡𝑡,𝑗𝑗), to look at the correlations between 𝐶𝐶𝑡𝑡,𝑖𝑖 and 𝐶𝐶𝑡𝑡,𝑗𝑗, and between 𝐷𝐷𝑡𝑡,𝑖𝑖 and 𝐷𝐷𝑡𝑡,𝑗𝑗 
(Figure S20A), where 𝑡𝑡 is a time-step of one week. 
 
We see that for the raw time series, the most dominant cross-correlations within a one-
year temporal lag range are negative, which indicates that a high value of one serotype 
is likely to lead to a low value of the other serotype over the next year. However, these 
time series data are highly autocorrelated (Figure S20B), and the CCF of the first-
differenced data are relatively uncorrelated across a two-year temporal lag range, 
implying that these interactions are not very strong after accounting for within-serotype 
autocorrelation. This was done using the ccf function in the stats package in R, with a 
lag.max value of 2 years. 
 
To assess between-year temporal patterns, this time between the two serotypes of EV-
A71 and CV-A16, we again used wavelet analysis. We computed the cross-wavelet 
transform for the Morlet wavelet using data from 1982 to 2015, and plot the cross-
wavelet power spectra of the time series of EV-A71 and CV-A16 taken together in 
Figure S21, as a function of period (y-axis) and time (x-axis), looking at various 
transformations of the data (square root, log + 1, log + 0.5, and raw). The cross-wavelet 
is used to highlight regions in time-frequency space where the time series show high 
common power [16]. 
 
We then superimposed the phase arrows from the cross-wavelet of the square root-
transformed time series of EV-A71 and CV-A16 in Figure S22 to more closely look at 
relative phasing. We observe that after 1997, the start of the inferential analysis, the two 
series are largely anti-phase (i.e., arrows generally point left). Prior to 1997, the relative 
phasing is less clear (i.e., arrows point in various directions). This was done using the 
xwt function in the biwavelet package in R. 
 
We used the same metrics from Table S3 on epidemic timing, size, and shape to 
assess within-year temporal patterns between serotypes for each year, with a one-year 
lag. We also adopted the same naming convention as in Section S3. These epidemic 
metrics are summarized in two scatterplot matrices, where each point on each 
scatterplot represents a year. Figure S23 shows correlations without the temporality, 
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and temporality is included in a comprehensive Figure S24. Again, the Spearman 
correlation coefficients are shown on the upper diagonal, and scatterplots where the 
absolute value of the correlation coefficient is greater than or equal to 0.5 are marked in 
red. 
 
While the strongest correlations are found within serotypes, the highest between-
serotype correlations are those in accordance with expectation (e.g., the proportion of 
one serotype vs. the total number of the other). Though the correlations are not very 
strong, we observe a negative relationship between two quantities of interest, sum EV 
and sum CV (i.e., yearly CV-A16 notifications is negatively associated with yearly EV-
A71 notifications), as well as a positive relationship between skew EV and sum CV (i.e., 
large CV-A16 years are associated with a EV-A71 epidemic curve that is skewed to the 
right). Additionally, we observe a negative association between the center of gravity of 
EV-A71 in year 𝑡𝑡0 and the proportion of HFMD cases attributable to CV-A16 in year 𝑡𝑡1. 
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Figure S20: Cross-correlation functions (CCF) for EV-A71 and CV-A16, 1997 to 

2015. (A) CCF (cross-correlation on y-axis) for weekly raw EV-A71 and CV-A16 series 
by time (x-axis in years) with a maximum lag of 2 years. (B) CCF for weekly first-

differenced EV-A71 and CV-A16 series. 
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Figure S21: Cross-wavelet analysis of various transformations of EV-A71 and CV-
A16, 1982 to 2015. (A) Raw virologic counts of EV-A71 (green) and CV-A16 (red). (B) 
Cross-wavelet power spectrum of square root-transformed series (x-axis is time (year), 
y-axis is the period (in years), color is the power spectrum). (C) Cross-wavelet power 
spectrum of log-transformed series plus 1. (D) Cross-wavelet power spectrum of log-

transformed series plus 0.5. (E) Cross-wavelet power spectrum of raw series. 
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Figure S22: Cross-wavelet analysis of EV-A71 and CV-A16 with phase arrows, 

1982 to 2015. Cross-wavelet power spectrum of square root-transformed series (x-axis 
is time (year), y-axis is the period (in years), color is the power spectrum), with cone of 
influence in white (where edge effects become important), and phase arrows in black. 
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Figure S23: Scatterplot matrix of within-year metrics of EV-A71 (“EV) and CV-A16 
(“CV”), without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each 
point corresponds to a year), peak week, onset week, total number of counts (“sum”), 
maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts 

that year that were that serotype (“prop”), and skewness. Spearman correlations 
marked on upper diagonal, with coefficients over 0.5 in red. 
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Figure S24: Scatterplot matrix of metrics of EV-A71 (“EV”) and CV-A16 (“CV”) 
with a one-year lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point 

corresponds to a year), peak week, onset week, total number of counts (“sum”), 
maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts 

that year that were that serotype (“prop”), and skewness. Here, 𝑡𝑡0 refers to values 
computed for the years 1982 to 2014, and 𝑡𝑡1 refers to values computed for the years 

1983 to 2015. Spearman correlations marked on upper diagonal, with coefficients over 
0.5 in red. 
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S5. The TSIR model 
 
Data-related challenges for modeling 
 
The data stream of syndromic and virologic HFMD surveillance is challenging from a 
modeling standpoint (Figure S25). The subscripts 𝑥𝑥 ∈ [1,2] refer to the two serotypes of 
interest, and the 𝑝𝑝𝑥𝑥, 𝑞𝑞𝑥𝑥, and 𝑟𝑟𝑥𝑥 marked in red represent the three sources of under-
reporting in the observation process. For parsimony, we assume that 𝑟𝑟1 and 𝑟𝑟2, the 
serotype-specific probability of an HFMD case being virologically tested, are equal. We 
also assume that 𝑞𝑞1 and 𝑞𝑞2, the serotype-specific probability of the doctor or clinic that 
an HFMD patient visits being in the sentinel network, are also equal. 
 
As stated in the main text, 10% of the syndromic sentinel sites also serve as sentinels 
for laboratory surveillance, from which specimens are tested for the infectious agent 
based on convenience sampling [17]. We do not assume that 𝑝𝑝1 and 𝑝𝑝2, the serotype-
specific probability of a true HFMD case attending a doctor or clinic, are equal. 
 
Therefore, the serotype-specific under-reporting rate inferred from the data becomes 
𝑝𝑝1𝑞𝑞1 and 𝑝𝑝2𝑞𝑞2, respectively (in both the one-serotype and two-serotype models). The 
method presented in Section S2 allows us to classify the weekly reported syndromic 
HFMD cases by causative serotype (thus accounting for 𝑟𝑟1 and 𝑟𝑟2), so these 
reconstructed serotype-specific weekly HFMD counts serve as the input data for the 
mechanistic modeling, and the remaining source of under-reporting that need to be 
accounted for in the modeling is the product of 𝑝𝑝𝑥𝑥  and 𝑞𝑞𝑥𝑥. Any inaccuracies in the 10% 
value from above will be compensated for in this model-fitted value of under-reporting. 
 
Model equations 
 
The time series susceptible-infected-recovered (TSIR) model is a discrete-time version 
of the continuous-time SIR model, in which individuals are born and enter the 
susceptible class of individuals, become infected and infectious with a disease (here, an 
HFMD serotype), and recover and are removed thereafter [18–21]. The TSIR model can 
be characterized by a set of difference equations. We followed the same inferential 
procedure as described in [22] and provide a brief outline here. The susceptible 
compartment of the TSIR model is defined by: 
 
 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 + 𝐵𝐵𝑡𝑡 − 𝐼𝐼𝑡𝑡+1              (1) 
 
At each time-step 𝑡𝑡, 𝑆𝑆𝑡𝑡 is the number of susceptible individuals, 𝐵𝐵𝑡𝑡 is the number of 
births (from demographic data), and 𝐼𝐼𝑡𝑡 is the true (unobserved) number of infected 
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individuals. For simplicity, we assumed that there is no maternal immunity period for 
HFMD, such that all individuals who are born immediately enter the susceptible 
compartment (though adding a compartment for maternally immune individuals would 
not change the qualitative dynamics). A central assumption is that every individual gets 
infected over the course of their life (see below); additionally, deaths are not explicitly 
modeled because it is assumed that infection precedes death for childhood diseases 
such as HFMD, in developed settings such as Japan. Taking this assumption that all 
individuals eventually become infected, we can reconstruct the time series of 
susceptible individuals by re-arranging the previous equation and fitting the following 
cumulative-cumulative linear regression: 
 

� 𝐵𝐵𝑚𝑚

𝑡𝑡

𝑚𝑚=1

= �
𝐶𝐶𝑚𝑚
𝜌𝜌

𝑡𝑡

𝑚𝑚=1

+ 𝑍𝑍𝑡𝑡 − 𝑍𝑍0                                                                                                        (2) 

 
Here, 𝐶𝐶𝑡𝑡 refers to the inferred serotype counts, 𝜌𝜌 is the reporting rate of infection (as a 
probability), and 𝑍𝑍𝑡𝑡 is the deviations around the mean number of susceptible individuals 
(𝑆𝑆̅) at time 𝑡𝑡. The 𝜌𝜌 is the fitted slope of this regression, and the residuals of this model 
are 𝑍𝑍𝑡𝑡. We first reconstruct 𝐼𝐼𝑡𝑡 = 𝐶𝐶𝑡𝑡 ⋅ 1 ∕ 𝜌𝜌, to obtain the complete time series of infected 
individuals. HFMD transmission is characterized by the following frequency-dependent 
dynamics: 
 
 𝐼𝐼𝑡𝑡+1 = 𝛽𝛽𝑠𝑠 ⋅ 𝐼𝐼𝑡𝑡𝛼𝛼1 ⋅ 𝑆𝑆𝑡𝑡𝛼𝛼2 ∕ 𝑁𝑁𝑡𝑡             (3) 
 
The 𝛽𝛽𝑠𝑠 is a seasonally-varying transmission rate that varies for each week 𝑠𝑠 of the year, 
between 1 and 53, 𝛼𝛼1 and 𝛼𝛼2 are correction parameters accounting for non-seasonal 
heterogeneities in mixing [18,19] as well as for time discretization [23], and 𝑁𝑁𝑡𝑡 is the 
total population size. We linearized equation (3) with the following regression model, as 
per [21]: 
 
 log(𝐼𝐼𝑡𝑡+1) = log(𝛽𝛽𝑠𝑠

∗) + 𝜁𝜁 ⋅ 𝑍𝑍𝑡𝑡 + 𝛼𝛼1 ⋅ log(𝐼𝐼𝑡𝑡)           (4) 
 
Here, 𝛽𝛽𝑠𝑠

∗ = 𝛽𝛽𝑠𝑠 ⋅ 𝑆𝑆̅𝛼𝛼2, and 𝜁𝜁 = 𝛼𝛼2 ∕ 𝑆𝑆̅. Since 𝑆𝑆̅ is unknown, 𝛼𝛼2 and 𝛽𝛽𝑠𝑠 are not identifiable 
unless 𝛼𝛼2 is fixed. We choose to fix the value of 𝛼𝛼2 at 1 as per [18,23], allowing us to 
estimate 𝑆𝑆̅ and 𝛽𝛽𝑠𝑠. Now, we are able to reconstruct 𝑆𝑆𝑡𝑡 = 𝑆𝑆̅ + 𝑍𝑍𝑡𝑡 to obtain the complete 
time series of susceptible individuals. Predictions (‘forward simulations’) for 𝑆𝑆𝑡𝑡+1 and 
𝐼𝐼𝑡𝑡+1 were generated using equations (1) and (3) (also see Section S7), with initial 
conditions and demography, as well as the 𝛼𝛼1 (variable), 𝛼𝛼2 (consistently fixed at 1), and 
𝛽𝛽𝑠𝑠 (estimated) parameter values. For stochastic simulations, 𝐼𝐼𝑡𝑡+1 would be drawn as a 
random variable with a mean equal to the right side of equation (3). 
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In more detail: demographic stochasticity introduces variability around the mean 
epidemic trajectory. In the TSIR model framework, demographic stochasticity is 
modeled as: if we have 𝐼𝐼𝑡𝑡  infected individuals at time 𝑡𝑡, the number of infected 
individuals at time 𝑡𝑡 + 1 will come from a negative binomial (or Poisson) distribution, 
with a mean equal to the right side of equation (3) and a variance. The predictions that 
we show at each time-step (e.g., in Figure 3B) are this mean value. The coefficient of 
variation of the negative binomial process decreases with more infections [19]. Since we 
have a relatively large number of infections at any time, for simplicity we show the 
deterministic (mean) predictions; adding the stochastic simulations in would lead to a 
'band' around the mean predictions. 
 
Fitting and sensitivity analyses 
 
We fit the one-serotype model to the inferred serotype data for EV-A71 and CV-A16 
separately. We show results from taking 1997 as well as 2000 as the start year, with no 
qualitative differences in results between the two (Figure S26 and Table S4, compared 
to Figure 3 and Table 1 in the main text). In the main analysis, we used a time-invariant 
under-reporting rate for the entire time series. A time-varying under-reporting rate could 
be implemented (e.g., by fitting a smoothing spline with varying degrees of freedom), 
but for simplicity in interpretation we opted for the former. 
 
In the main analysis, we also fixed 𝛼𝛼1 at a canonical value of 0.975. In previous work we 
performed extensive sensitivity analysis of the TSIR model to a range of 𝛼𝛼1 values [22], 
so here we chose some representative 𝛼𝛼1 values to conduct some sensitivity analysis of 
the one-serotype TSIR model for the 1997 data (see Table S5 for parameters, and 
Figures S27–S30 for model predictions). We note that inferred 𝛼𝛼1 values are lower than 
mechanistically necessary 𝛼𝛼1 values to explain the multi-annual cycles of EV-A71. 
Lastly, while 𝛼𝛼1 could vary between the two serotypes, we used a consistent value 
throughout the manuscript for comparability. 
 
Additionally, we performed a simulation exercise examining the sensitivity of the TSIR 
model estimates to the assumption of all individuals becoming infected (Figures S31–
S33). For this, we used a well-studied dataset of reported bi-weekly measles in London 
from 1944 to 1964 [19]. We find that if only a fraction of all individuals become infected, 
this will result in the under-estimation of the true reporting rate with relatively minor 
downstream effects on the proportion susceptible and the mean transmission rate, but 
will not qualitatively affect the dynamics of the model. The one-serotype TSIR model 
can be implemented using the tsiR R package [24]. 
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Figure S25: Flow diagram of the data stream for syndromic and virologic 

surveillance in Japan, from left (true HFMD cases per a week: unobserved) to 
right (syndromic HFMD reports and serotyped cases per week: grey boxes, 

observed). The 𝑝𝑝, 𝑞𝑞, and 𝑟𝑟 highlighted in red are probabilities, with subscripts 1 and 2 
referring to the two serotypes, EV-A71 and CV-A16. 
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Figure S26: Deterministic one-serotype TSIR output for EV-A71 and CV-A16, 2000 
to 2015 (analogue to Figures 3A–D in main text). (A) 𝛽𝛽𝑠𝑠 values for EV-A71 (x-axis is 
week of year). (B) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (C) 𝛽𝛽𝑠𝑠 values for CV-

A16. (D) Observed time series (black) against predicted model fit (red) for CV-A16. 
Parameter values in Table S4. 
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Serotype 𝝆𝝆 𝒔𝒔� 𝜷𝜷� CV of 𝜷𝜷𝒔𝒔 𝜶𝜶𝟏𝟏 
EV-A71 0.0354 0.0940 13.7969 0.4061 0.975 
CV-A16 0.0518 0.0989 13.0420 0.2612 0.975 

Table S4: Epidemiological parameters from the one-serotype model, 2000 to 2015. 
Reporting rate, mean proportion susceptible, mean transmission rate, and coefficient of 

variation in transmission rate, by serotype. CV: coefficient of variation. 
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Scenario 𝜶𝜶𝟏𝟏 
EV-A71 

𝜶𝜶𝟏𝟏 
CV-A16 

𝝆𝝆 
EV-A71 

𝝆𝝆 
CV-A16 

𝒔𝒔� 
EV-A71 

𝒔𝒔� 
CV-A16 

𝜷𝜷� 
EV-A71 

𝜷𝜷� 
CV-A16 

Main Optimal/ 
tuned: 
0.975 

Optimal/ 
tuned: 
0.975 

0.0349 0.0525 0.0935 0.1056 13.9054 12.2532 

S1 Inferred: 
0.899 

Inferred: 
0.901 

0.0349 0.0525 0.0914 0.1355 26.8334 18.4408 

S2 Fixed: 
0.970 

Fixed: 
0.970 

0.0349 0.0525 0.0934 0.1072 14.5137 12.6167 

S3 Fixed: 
0.980 

Fixed: 
0.980 

0.0349 0.0525 0.0937 0.1040 13.3230 11.8980 

S4 Fixed: 
0.990 

Fixed: 
0.990 

0.0349 0.0525 0.0939 0.1010 12.2317 11.2125 

Table S5: Parameter specifications and estimates for the one-serotype TSIR 
model in the main analysis (top row) and in the sensitivity analyses, 1997 to 2015. 
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Figure S27: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S1 

from Table S5. (A) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 

series (black) against predicted model fit (red) for CV-A16. 
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Figure S28: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S2 

from Table S5. (A) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 

series (black) against predicted model fit (red) for CV-A16. 
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Figure S29: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S3 
from Table S5. (A) Observed time series (black) against predicted model fit (green) for 

EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 
series (black) against predicted model fit (red) for CV-A16. 
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Figure S30: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S4 

from Table S5. (A) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 

series (black) against predicted model fit (red) for CV-A16. 
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Figure S31: Testing a TSIR model assumption. Scenario 1: Assume 100% of 

births get infected (expected for measles). (A) Cumulative cases (red) and 
cumulative births (blue) in London over time (x-axis), and fitted regression line (green). 

(B) Estimated reporting rate (y-axis) over time (x-axis), held constant over the entire 
time period. (C) Reconstructed 𝑍𝑍𝑡𝑡 (red) and 𝑆𝑆𝑡𝑡 (turquoise) over time (x-axis). (D) Log-

likelihood (y-axis) profiled over 𝑆𝑆̅ values, with the maximum likelihood value of 𝑆𝑆̅ 
indicated by the dashed line. (E) Inferred 𝛽𝛽𝑠𝑠 values and confidence interval (y-axis) for 
each of the 26 bi-weeks of the year (x-axis); 𝛼𝛼 value fixed at 0.97. (F) Observed data 
(blue) against predicted model fit (red). (G) Inverse of observed data (blue) against 

predicted model fit (red). Analysis done using the tsiR R package. 
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Figure S32: Testing a TSIR model assumption. Scenario 2: Assume only 80% of 

births get infected; in the model, inflate number of cases to correct for cases 
representing only a subset of all births. (A) Cumulative cases (red) and cumulative 

births (blue) in London over time (x-axis), and fitted regression line (green). (B) 
Estimated reporting rate (y-axis) over time (x-axis), held constant over the entire time 

period. (C) Reconstructed 𝑍𝑍𝑡𝑡 (red) and 𝑆𝑆𝑡𝑡 (turquoise) over time (x-axis). (D) Log-
likelihood (y-axis) profiled over 𝑆𝑆̅ values, with the maximum likelihood value of 𝑆𝑆̅ 

indicated by the dashed line. (E) Inferred 𝛽𝛽𝑠𝑠 values and confidence interval (y-axis) for 
each of the 26 bi-weeks of the year (x-axis); 𝛼𝛼 value fixed at 0.97. (F) Observed data 
(blue) against predicted model fit (red). (G) Inverse of observed data (blue) against 

predicted model fit (red). Analysis done using the tsiR R package. 
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Figure S33: Testing a TSIR model assumption. Scenario 3: Assume only 80% of 
births get infected; in the model, deflate number of births to correct for not all 
births getting infected. (A) Cumulative cases (red) and cumulative births (blue) in 
London over time (x-axis), and fitted regression line (green). (B) Estimated reporting 

rate (y-axis) over time (x-axis), held constant over the entire time period. (C) 
Reconstructed 𝑍𝑍𝑡𝑡 (red) and 𝑆𝑆𝑡𝑡 (turquoise) over time (x-axis). (D) Log-likelihood (y-axis) 
profiled over 𝑆𝑆̅ values, with the maximum likelihood value of 𝑆𝑆̅ indicated by the dashed 
line. (E) Inferred 𝛽𝛽𝑠𝑠 values and confidence interval (y-axis) for each of the 26 bi-weeks 
of the year (x-axis); 𝛼𝛼 value fixed at 0.97. (F) Observed data (blue) against predicted 
model fit (red). (G) Inverse of observed data (blue) against predicted model fit (red). 

Analysis done using the tsiR R package. 
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S6. The two-serotype TSIR model 
 
Model equations 
 
The two-serotype time series susceptible-infected-recovered (TSIR) model is a discrete-
time version of the continuous-time SIR model, and allows for a transient heterotypic 
(different serotype) cross-immunity against all other serotypes after infection, and no 
homotypic (same serotype) re-infection (see Figure 2 in main text for compartmental 
model structure). The multi-serotype TSIR model was originally developed by Reich et 
al [25], and we applied a version of the model in our previous analysis of the causative 
serotypes of HFMD in China [22]. The multi-serotype TSIR model can be characterized 
by a set of difference equations, and we focus here on the case of two serotypes. The 
susceptible compartment for serotype 𝑖𝑖 of the two-serotype TSIR model is defined by: 
 
 𝑆𝑆𝑡𝑡+1,𝑖𝑖 = 𝑆𝑆𝑡𝑡,𝑖𝑖 + 𝐵𝐵𝑡𝑡 − 𝐼𝐼𝑡𝑡+1,𝑖𝑖 − 𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖            (1) 
 
At each time-step 𝑡𝑡, 𝑆𝑆𝑡𝑡,𝑖𝑖 is the number of susceptible individuals to serotype 𝑖𝑖, 𝐵𝐵𝑡𝑡 is the 
number of births (from demographic data), and 𝐼𝐼𝑡𝑡,𝑖𝑖 is the true (unobserved) number of 
infected individuals. For simplicity we assumed that there is no maternal immunity 
period for HFMD, such that all individuals who are born immediately enter the 
susceptible compartment. 𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖 represents the effect of a transient cross-protection 
against infection with serotype 𝑖𝑖 after infection with serotype 𝑗𝑗 ≠ 𝑖𝑖, and is defined by: 
 
 𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖 = 𝐼𝐼𝑡𝑡,𝑗𝑗 − 𝐼𝐼𝑡𝑡−𝑘𝑘𝑗𝑗,𝑗𝑗              (2) 
 
In this parametrization, 𝑘𝑘𝑗𝑗 is the fixed duration (in weeks) of cross-protection against 
serotype 𝑖𝑖, following infection with serotype 𝑗𝑗. This model is a slight variation of that 
used in [22]; here, we allow for a potential asymmetry in the duration of cross-protection 
and fix the strength of cross-protection at 100% for parsimony. Assuming that all 
individuals eventually become infected with both serotypes over the course of their life, 
we can reconstruct the time series of susceptible individuals by re-arranging the 
previous equation and fitting the following cumulative-cumulative linear regressions: 
 

� 𝐵𝐵𝑚𝑚

𝑡𝑡

𝑚𝑚=1

= �
𝐶𝐶𝑚𝑚,𝑖𝑖

𝜌𝜌𝑖𝑖

𝑡𝑡

𝑚𝑚=1

+ � 𝐶𝐶𝐶𝐶𝑚𝑚,𝑖𝑖

𝑡𝑡

𝑚𝑚=1

+ 𝑍𝑍𝑡𝑡,𝑖𝑖 − 𝑍𝑍0,𝑖𝑖                                                                          (3) 

 
Here, 𝐶𝐶𝑡𝑡,𝑖𝑖 refers to the inferred serotype counts, 𝜌𝜌𝑖𝑖 is the serotype-specific reporting rate 
of infection (as a probability), and 𝑍𝑍𝑡𝑡,𝑖𝑖 is the deviations around the mean number of 
susceptible individuals (𝑆𝑆𝚤𝚤� ) to serotype 𝑖𝑖 at time 𝑡𝑡. The 𝜌𝜌𝑖𝑖 values were estimated as the 
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slope of this regression (using the 𝜌𝜌𝑗𝑗 parameters as iteratively estimated offset terms, 
since the 𝐼𝐼𝑡𝑡,𝑖𝑖 = 𝐶𝐶𝑡𝑡,𝑖𝑖 ⋅ 1 ∕ 𝜌𝜌𝑖𝑖 and 𝐶𝐶𝐶𝐶𝑡𝑡,𝑖𝑖 terms both depend on 𝜌𝜌𝑖𝑖), and the residuals of the 
models are 𝑍𝑍𝑡𝑡,𝑖𝑖. We first reconstruct 𝐼𝐼𝑡𝑡,𝑖𝑖 to obtain the complete time series of infected 
individuals. Serotype-specific transmission is characterized by the following frequency-
dependent dynamics: 
 
 𝐼𝐼𝑡𝑡+1,𝑖𝑖 = 𝛽𝛽𝑠𝑠,𝑖𝑖 ⋅ 𝐼𝐼𝑡𝑡,𝑖𝑖

𝛼𝛼1 ⋅ 𝑆𝑆𝑡𝑡,𝑖𝑖
𝛼𝛼2 ∕ 𝑁𝑁𝑡𝑡            (4) 

 
The 𝛽𝛽𝑠𝑠,𝑖𝑖 is a seasonally-varying transmission rate that varies for each week 𝑠𝑠 of the 
year, between 1 and 53. In the main analysis, we allow this transmission rate to have a 
serotype-specific shape and scale. As in the single-serotype scenario, we similarly 
linearized equation (4) with the following regression model: 
 
 log�𝐼𝐼𝑡𝑡+1,𝑖𝑖� = log�𝛽𝛽𝑠𝑠,𝑖𝑖

∗� + 𝜁𝜁𝑖𝑖 ⋅ 𝑍𝑍𝑡𝑡,𝑖𝑖 + 𝛼𝛼1 ⋅ log�𝐼𝐼𝑡𝑡,𝑖𝑖�          (5) 
 
Analogously, 𝛽𝛽𝑠𝑠,𝑖𝑖

∗ = 𝛽𝛽𝑠𝑠,𝑖𝑖 ⋅ 𝑆𝑆𝚤𝚤�
𝛼𝛼2, and 𝜁𝜁𝑖𝑖 = 𝛼𝛼2 ∕ 𝑆𝑆𝚤𝚤� . Following similar steps as in the single-

serotype scenario, we are able to reconstruct 𝑆𝑆𝑡𝑡,𝑖𝑖 = 𝑆𝑆𝚤𝚤� + 𝑍𝑍𝑡𝑡,𝑖𝑖 to obtain the complete time 
series of susceptible individuals by serotype. Predictions (‘forward simulations’) for 𝑆𝑆𝑡𝑡+1,𝑖𝑖 
and 𝐼𝐼𝑡𝑡+1,𝑖𝑖 were again generated using equations (1) and (4) (also see Section S7), with 
initial conditions and demography, as well as the 𝛼𝛼1 (variable), 𝛼𝛼2 (consistently fixed at 
1), and 𝛽𝛽𝑠𝑠,𝑖𝑖 (estimated) parameter values. 
 
Parameterizing cross-protection 
 
In addition to the parameter estimation procedure described above, it is also necessary 
to estimate 𝒌𝒌, or the pair of 𝑘𝑘 values characterizing cross-protection between the two 
serotypes. We devised a two-step process to estimate 𝒌𝒌, described below. Notationally, 
𝑘𝑘𝐸𝐸𝐸𝐸–𝐴𝐴71 refers to the duration of cross-protection (in weeks) following infection with EV-
A71, and 𝑘𝑘𝐶𝐶𝐶𝐶–𝐴𝐴16 refers to the duration of cross-protection (in weeks) following infection 
with CV-A16. Parameters inferred simply from a regression framework are not 
necessarily optimal from a dynamical standpoint since their values for predictive 
purposes often depend on the periodicity of the time series of interest [23], so we need 
to obtain optimal cross-protection parameter estimates both in terms of statistical 
likelihood and in terms of predicted correlation in epidemic trajectory. In the first step, 
we leverage profile likelihoods to narrow down the plausible parameter space, and in 
the second step, we hone in on optimal values of cross-protection from a dynamical 
standpoint. We performed this procedure to estimate 𝒌𝒌 on the longer of the time series 
(1997 to 2015), but there were no qualitative differences when taking 2000 as the start 



54 

year (not shown). The sensitivity analyses are conditional on these 𝒌𝒌 values (see 
below). 
 
First, we constructed a profile likelihood surface over 𝑘𝑘𝐸𝐸𝐸𝐸–𝐴𝐴71 and 𝑘𝑘𝐶𝐶𝐶𝐶–𝐴𝐴16 ranging from 0 
to 2 years, by week (i.e., 0 to 104 weeks). We fixed 𝛼𝛼1 at 0.975 and fit all of the other 
parameters as described above, and extracted the log-likelihood from the two-serotype 
TSIR model. As shown in Figure S34, we calculated the log-likelihood at 105 by 105 = 
11,025 pairs of 𝒌𝒌. Ultimately 5,251 𝒌𝒌 pairs were within the 95% bivariate confidence 
region (grid cells outlined in black), of which 3,250 pairs had successful convergence in 
susceptible reconstruction and were carried forward to the next step of the procedure. 
 
Second, for each of the 3,250 pairs of 𝒌𝒌 that remained, we took the fitted parameter 
values and forward simulated incidence using the two-serotype TSIR model over the 
duration of the time series. For each focal serotype, we calculated the 𝑅𝑅2 values 
comparing observed against expected counts: we aggregated these counts over 4-week 
bins, and fit a simple linear regression with no intercept term. In Figure S35A, we show 
the mean of the 𝑅𝑅2 values for EV-A71 and CV-A16. The globally optimal 𝒌𝒌 is where the 
averaged 𝑅𝑅2 is the highest (black circle), and this peak leads to forward predictions for 
EV-A71 that are consistently robust throughout the course of the time series (Figure 
S35B). We also explored the ridge of high 𝑅𝑅2 values below the 𝑦𝑦 = 𝑥𝑥 line (purple circle) 
and find that while this local maximum has a high 𝑅𝑅2 averaged over the entire time 
series, it performs qualitatively less well in predicting the latter half of the time series 
(Figure S35C). 
 
Fitting, sensitivity analysis, and future considerations 
 
We fit the two-serotype model to the inferred serotype data for EV-A71 and CV-A16 
together. The best-fit values of 𝒌𝒌 from our two-step estimation process supported the 
existence of an asymmetry: based on the time series from 1997 to 2015, we estimated 
𝑘𝑘 = 8 weeks of complete cross-immunity against CV-A16 after infection with EV-A71, 
and 𝑘𝑘 = 39 weeks of complete cross-immunity against EV-A71 after infection with CV-
A16 (global optimum). We compared this to a local optimum below the 𝑦𝑦 = 𝑥𝑥 line (𝑘𝑘 = 
17 weeks of complete cross-immunity against CV-A16 after infection with EV-A71, and 
𝑘𝑘 = 11 weeks of complete cross-immunity against EV-A71 after infection with CV-A16), 
for which the predictive power was considerably lower (Figure S35). 
 
We show model results from taking 1997 as well as 2000 as the start year, with no 
qualitative differences in results between the two (Figure S36 and Table S6, compared 
to Figure 5 and Table 1 in the main text). An important distinction, however, is that we 
only fit the cross-protection parameters for the main time period (1997 to 2015) and 
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applied them to the 2000 to 2015 time period. In practice, we first estimated 𝒌𝒌 as 
described above, and fit all other parameters conditional on those values of 𝒌𝒌 and 𝛼𝛼1 = 
0.975 (i.e., reporting rate, proportion susceptible, and seasonal transmission rate, by 
serotype). To highlight the differences between performing susceptible reconstruction in 
the one-serotype and two-serotype analyses, we show how reconstructed 𝑠𝑠𝑡𝑡,𝑖𝑖 = 𝑆𝑆𝑡𝑡,𝑖𝑖 ∕ 𝑁𝑁𝑡𝑡 
varies between the models (Figure S37). In Figure S37A, we see that 𝑠𝑠𝑡𝑡 of EV-A71 from 
the two-serotype model (dark green line) dips according to CV-A16 incidence (red): for 
instance, 2011 was a large year of CV-A16 which removed EV-A71 susceptibles into 
the cross-protection class, whereas 𝑠𝑠𝑡𝑡 of EV-A71 from the one-serotype model (light 
green line) continues to increase (this is under the ‘null scenario’ of no cross-protection). 
 
As in the one-serotype models, we here fixed 𝛼𝛼1 at a canonical value of 0.975, using the 
same value for each serotype for comparability, and used a time-invariant under-
reporting rate for the entire time series. We again performed some sensitivity analysis of 
the two-serotype TSIR model to 𝛼𝛼1 for the 1997 to 2015 data (see Table S7 for 
parameters, and Figures S38–S41 for model predictions). We used the same values of 
cross-protection from before to maintain comparability (likely to be plausible since 
cross-protection is a biological parameter), though its exact values could vary by 
performing the estimation procedure with different values of 𝛼𝛼1 (and also with different 
time periods for estimation). We re-emphasize that the epidemiological parameters are 
conditional on these fixed values of 𝒌𝒌, as well as on 𝛼𝛼1 and the time period of interest. 
 
Again, we note that inferred 𝛼𝛼1 values are lower than the mechanistically necessary 𝛼𝛼1 
values to explain the multi-annual cycles of EV-A71. The only simulation here in which 
𝛼𝛼1 values vary by serotype is scenario S1 (Table S7), in which they are estimated 
independently and then applied in the two-serotype forward simulations. More work will 
be needed to better understand the complexities of tuning 𝛼𝛼 parameters in multi-
serotype TSIR systems; however, as 𝛼𝛼1 approaches the value of 1, we know that the 
model behavior becomes erratic because the underlying Reed-Frost epidemic model is 
neutrally stable and the TSIR approximation breaks down [22,23]. 
 
We also explored the scenario in which the 𝛽𝛽𝑠𝑠 of the two serotypes are constrained to 
have the same shape, but allowed to vary in magnitude (Figure S42). Crudely, the 
forward simulations from this sensitivity analysis (which use cross-protection values of 𝒌𝒌 
fixed at those inferred from the main model with serotype-specific 𝛽𝛽 shapes) do not fit 
the data as well as when we allow the 𝛽𝛽𝑠𝑠 shapes to vary by serotype. Since seasonality 
in contact rates is a periodic driver, an important future direction of work will be to better 
understand if and how it interacts with cross-immunity: seasonality as modeled here 
could perhaps be a proxy for more complicated fluctuations in mixing patterns over time. 
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Lastly, future work should focus on gaining a better understanding of model sensitivity 
to (and uncertainty in) cross-protection parameters. Our preliminary work suggests that 
if there was no cross-protection, the analysis would reduce to the one-serotype models, 
which do not fit the data as well as the two-serotype models do. Furthermore, the multi-
serotype TSIR model has previously been demonstrated to accurately be able to detect 
the presence or absence of (symmetric) cross-protection in simulations [25]. 
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Figure S34: Profile likelihood surface over pairs of cross-protection parameters 𝒌𝒌, 

on data from 1997 to 2015. Duration of cross-protection against CV-A16 following 
infection with EV-A71 (x-axis in weeks), duration of cross-protection against EV-A71 

following infection with CV-A16 (y-axis in weeks), and profile log-likelihood of the two-
serotype TSIR model with 𝛼𝛼1 = 0.975. Grid cells outlined in black represent 𝒌𝒌 values 

that are within the 95% bivariate confidence region, derived from the 𝜒𝜒2 distribution with 
2 degrees of freedom. Grid cells shaded in red represent 𝒌𝒌 values within the confidence 

region that experienced problems with convergence in susceptible reconstruction 
(inferred 𝑠̅𝑠 for CV-A16 was not within [0,1]). 
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Figure S35: Mean 𝑹𝑹𝟐𝟐 and internal predictability from forward simulations of the 

two-serotype TSIR model, 1997 to 2015. (A) 𝑅𝑅2 value averaged between EV-A71 and 
CV-A16 and aggregated over 4-week bins, at cross-protection values of each of the 
3,250 pairs of 𝒌𝒌 that are outlined in black and not shaded in red, in Figure S29. The 
global optimum is the black circle, and a local optimum below the 𝑦𝑦 = 𝑥𝑥 line (dashed 
black line) is the purple circle. (B) Observed data (grey) against predicted model fit 

(green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases) at the global 
optimum 𝒌𝒌: 𝑅𝑅2 = 0.85 for the entire EV-A71 time series, and 𝑅𝑅2 = 0.81 for the EV-A71 
time series from 2007 to 2015. (C) Observed data (grey) against predicted model fit 

(green) for EV-A71 at the local optimum 𝒌𝒌: 𝑅𝑅2 = 0.59 for the entire EV-A71 time series, 
and 𝑅𝑅2 = 0.24 for the EV-A71 time series from 2007 to 2015. 
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Figure S36: Deterministic two-serotype TSIR output for EV-A71 and CV-A16, 2000 
to 2015 (analogue to Figures 5A–D in main text). (A) 𝛽𝛽𝑠𝑠 values for EV-A71 (x-axis is 
week of year). (B) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (C) 𝛽𝛽𝑠𝑠 values for CV-

A16. (D) Observed time series (black) against predicted model fit (red) for CV-A16. 
Parameter values in Table S6. 
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Serotype 𝝆𝝆 𝒔𝒔� 𝜷𝜷� CV of 𝜷𝜷𝒔𝒔 𝜶𝜶𝟏𝟏 Optimal 𝒌𝒌* 
EV-A71 0.0351 0.0968 13.2798 0.4031 0.975 8 
CV-A16 0.0514 0.0880 14.6609 0.2577 0.975 39 

Table S6: Epidemiological parameters from the two-serotype model, 2000 to 2015. 
Reporting rate, mean proportion susceptible, mean transmission rate, and coefficient of 
variation in transmission rate, by serotype. CV: coefficient of variation. *Values of cross-

protection are fixed at those inferred from the main model (1997 to 2015). 
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Figure S37: Inferred susceptibles from the one-serotype and two-serotype 

models, 1997 to 2015. (A) 𝑆𝑆𝑡𝑡 ∕ 𝑁𝑁𝑡𝑡 for EV-A71 from the one-serotype (light green) and 
two-serotype (dark green) TSIR models (left y-axis), along with observed time series of 
CV-A16 (red, right y-axis). (B) 𝑆𝑆𝑡𝑡 ∕ 𝑁𝑁𝑡𝑡 for CV-A16 from the one-serotype (light red) and 
two-serotype (dark red) TSIR models (left y-axis), along with observed time series of 

EV-A71 (green, right y-axis). 
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Scenario 𝜶𝜶𝟏𝟏 
EV-A71 

𝜶𝜶𝟏𝟏 
CV-A16 

𝝆𝝆 
EV-A71 

𝝆𝝆 
CV-A16 

𝒔𝒔� 
EV-A71 

𝒔𝒔� 
CV-A16 

𝜷𝜷� 
EV-A71 

𝜷𝜷� 
CV-A16 

Main Optimal/ 
tuned: 
0.975 

Optimal/ 
tuned: 
0.975 

0.0349 0.0524 0.0838 0.1001 15.3655 12.9143 

S1 Inferred: 
0.879 

Inferred: 
0.899 

0.0349 0.0524 0.0393 0.0857 71.8937 29.8462 

S2 Fixed: 
0.970 

Fixed: 
0.970 

0.0349 0.0524 0.0791 0.0990 16.9405 13.6485 

S3 Fixed: 
0.980 

Fixed: 
0.980 

0.0349 0.0524 0.0890 0.1013 13.8894 12.2186 

S4 Fixed: 
0.990 

Fixed: 
0.990 

0.0349 0.0524 0.1017 0.1036 11.2125 10.9351 

S5 Optimal/ 
tuned: 
0.975 

Optimal/ 
tuned: 
0.975 

0.0349 0.0524 0.0778 0.1282 15.9350 
(constrained 

to share 
shape with 
CV-A16) 

10.0255 
(constrained 

to share 
shape with 
EV-A71) 

Table S7: Parameter specifications and estimates for the two-serotype TSIR 
model in the main analysis (top row) and in the sensitivity analyses, 1997 to 2015. 
All models are fixed with 𝑘𝑘 = 8 weeks of complete cross-immunity against CV-A16 after 
infection with EV-A71, and 𝑘𝑘 = 39 weeks of complete cross-immunity against EV-A71 

after infection with CV-A16. 
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Figure S38: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S1 

from Table S7. (A) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 

series (black) against predicted model fit (red) for CV-A16. 
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Figure S39: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S2 

from Table S7. (A) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 

series (black) against predicted model fit (red) for CV-A16. 
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Figure S40: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S3 

from Table S7. (A) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 

series (black) against predicted model fit (red) for CV-A16. 
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Figure S41: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S4 

from Table S7. (A) Observed time series (black) against predicted model fit (green) for 
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time 

series (black) against predicted model fit (red) for CV-A16. 
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Figure S42: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S5 

from Table S7. (A) 𝛽𝛽𝑠𝑠 values for EV-A71, where values for the two serotypes are 
constrained to have the same shape (x-axis is week of year). (B) Observed time series 

(black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is 
weekly number of cases). (C) 𝛽𝛽𝑠𝑠 values for CV-A16, where the two serotypes are 

constrained to have the same shape. (D) Observed time series (black) against predicted 
model fit (red) for CV-A16. 
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S7. Comparison of one-serotype and two-serotype model fit 
 
Internal predictability 
 
We assessed the goodness of one-serotype and two-serotype model fit using a suite of 
techniques: first, we assessed internal predictability, namely how well the model 
predictions match the data. To do this, we compared the observed data against the 
model-predicted time series. Rather than a simple one-step-ahead prediction, this is a 
more rigorous test (‘𝑛𝑛-step-ahead’ or ‘forward simulation’): we use the entire observed 
data to fit the model based on its short-term behavior, and then use the inferred 
parameters and the initial conditions to deterministically simulate the entire duration of 
the time series using the model framework. 
 
We compared the observed against expected values using the one-serotype and two-
serotype models in scatterplots (Figure S43 for 1997 to 2015, and Figure S44 for 2000 
to 2015). We aggregated counts over 4-week bins, and fit a simple linear regression 
with no intercept term for each comparison. We found that for both EV-A71 and CV-
A16, incorporating cross-protection at the optimal values leads to a better fit (i.e., closer 
to the 𝑦𝑦 = 𝑥𝑥 line). We also compared the cross-wavelet spectra of the observed data 
and the model-predicted time series (Figure S45), using similar methods as described in 
Section S3, here taking the square root transformations and plotting the bias-corrected 
power. We see that the comparison series are largely in phase at the one-year period 
(i.e., the phase arrows generally point right), but that the two-serotype model fits are 
better able to capture the observed multi-annual cycles of EV-A71 (Figure S45C). 
 
External (strictly out-of-sample) predictability 
 
Second, we assessed external predictability, namely how well we are able to predict 
incidence forward in time. This was done with cross-validation studies by fitting the 
models to only the first half of the time series data (‘training set’) and testing how well it 
predicts the qualitative and quantitative characteristics of the second half (‘testing set’) 
out-of-sample. Out-of-sample fit is a much more difficult test of the model than forward 
prediction (internal predictability) [26], since none of the data from the testing set is used 
in parameter estimation. As such, we allowed for a ‘reset’ of the initial conditions at time 
𝑡𝑡∗ (𝑆𝑆𝑡𝑡∗,𝑖𝑖 and 𝐼𝐼𝑡𝑡∗,𝑖𝑖 for serotype 𝑖𝑖, as well as 𝐼𝐼𝑡𝑡,𝑖𝑖 for the 𝑘𝑘𝑖𝑖 prior time-steps in the two-
serotype case) at their true values, at the start of the out-of-sample model fit. 
 
For the 1997 to 2015 dataset, we initiated the reset at the start of 2007, such that the 
training set consists of 10 years of data (1997 to 2006, inclusive) and the testing set 
consists of 9 years of data (2007 to 2015, inclusive). For the 2000 to 2015 dataset, we 
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initiated the reset at the start of 2011, such that the training set also consists of 10 years 
of data (2000 to 2009, inclusive) and the testing set consists of 6 years of data (2010 to 
2015, inclusive), fixing cross-protection parameters in the two-serotype model at the 
optimal values from 1997 to 2015. 
 
In Figure S46 and Figure S47, we plot the time series of the out-of-sample testing set 
predictions. We see that model fit is overall worse than in internal predictability tests (in 
line with expectations), but that the two-serotype model with cross-protection provides 
an improved visual fit over the one-serotype model. We also compared the observed 
against expected values using both the one-serotype and two-serotype models in an 
scatterplot (Figure S48 for 1997 to 2015, and Figure S49 for 2000 to 2015). We 
aggregated counts over 4-week bins, and fit a simple linear regression with no intercept 
term for each comparison. While the fits are generally worse than in Figure S43 and 
Figure S44, we found that for both EV-A71 and CV-A16, incorporating cross-protection 
(at the optimal values of 𝒌𝒌) also leads to a better out-of-sample fit. Comparisons of 
internal and external predictability are provided in Table S8 and Table S9. There has 
been a great deal of work on out-of-sample predictability and phase dependence in time 
series analysis (e.g., [27] and references therein), and we emphasize that the exercise 
performed here is a starting point for more in-depth analysis. 
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Figure S43: Internal predictability of the one-serotype and two-serotype TSIR 

models, 1997 to 2015. Observed data (x-axis) against model-predicted time series (y-
axis), adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-

serotype model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype 
model for EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear 

regression without an intercept and 95% confidence interval in green (EV-A71) and red 
(CV-A16), and the 𝑦𝑦 = 𝑥𝑥 line in black. 
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Figure S44: Internal predictability of the one-serotype and two-serotype TSIR 

models, 2000 to 2015. Observed data (x-axis) against model-predicted time series (y-
axis), adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-

serotype model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype 
model for EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear 

regression without an intercept and 95% confidence interval in green (EV-A71) and red 
(CV-A16), and the 𝑦𝑦 = 𝑥𝑥 line in black. 
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Figure S45: Cross-wavelet analysis of observed data and the output of one-
serotype and two-serotype TSIR models, 1997 to 2015. Cross-wavelet power 

spectrum of square root-transformed observed data and model-predicted time series (x-
axis is time (year), y-axis is the period (in years), and color is the bias-corrected power 

spectrum) for the: (A) One-serotype model for EV-A71. (B) One-serotype model for CV-
A16. (C) Two-serotype model for EV-A71. (D) Two-serotype model for CV-A16. Cone of 
influence in white (where edge effects become important), and phase arrows in black. 
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Figure S46: Out-of-sample model predictions of the one-serotype and two-

serotype TSIR models, on testing data from 2007 to 2015 (fit to training data from 
1997 to 2006). Observed time series (black) against predicted out-of-sample model fit 

(blue (EV-A71) or purple (CV-A16)), adjusted for reporting rate, for the: (A) One-
serotype model for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) 

One-serotype model for CV-A16. (C) Two-serotype model for EV-A71. (D) Two-
serotype model for CV-A16. 
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Figure S47: Out-of-sample model predictions of the one-serotype and two-

serotype TSIR models, on testing data from 2010 to 2015 (fit to training data from 
2000 to 2009). Observed time series (black) against predicted out-of-sample model fit 

(blue (EV-A71) or purple (CV-A16)), adjusted for reporting rate, for the: (A) One-
serotype model for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) 

One-serotype model for CV-A16. (C) Two-serotype model for EV-A71. (D) Two-
serotype model for CV-A16. 
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Figure S48: External predictability of the one-serotype and two-serotype TSIR 

models, on testing data from 2007 to 2015 (fit to training data from 1997 to 2006). 
Observed data (x-axis) against out-of-sample, model-predicted time series (y-axis), 
adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-serotype 
model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype model for 

EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear regression 
without an intercept and 95% confidence interval in green (EV-A71) and red (CV-A16), 
and the 𝑦𝑦 = 𝑥𝑥 line in black. Color of point corresponds to distance since the start of the 

testing set (𝑡𝑡∗). 
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Figure S49: External predictability of the one-serotype and two-serotype TSIR 

models, on testing data from 2010 to 2015 (fit to training data from 2000 to 2009). 
Observed data (x-axis) against out-of-sample, model-predicted time series (y-axis), 
adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-serotype 
model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype model for 

EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear regression 
without an intercept and 95% confidence interval in green (EV-A71) and red (CV-A16), 
and the 𝑦𝑦 = 𝑥𝑥 line is in black. Color of point corresponds to distance since the start of 

the testing set (𝑡𝑡∗). 
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Test Model Serotype Training 
set 

Testing 
set 

𝑹𝑹𝟐𝟐 
1997–2015 

𝑹𝑹𝟐𝟐 
1997–2006 

𝑹𝑹𝟐𝟐 
2007–2015 

Figures 

Internal 1 EV-A71 1997–
2015 

NA 0.38637 0.54563 0.20564 3B 
S43A 

Internal 1 CV-A16 1997–
2015 

NA 0.66372 0.84259 0.53191 3D 
S43B 

Internal 2 EV-A71 1997–
2015 

NA 0.85117 0.87861 0.81362 5B 
S43C 

Internal 2 CV-A16 1997–
2015 

NA 0.77507 0.81130 0.78625 5D 
S43D 

External 1 EV-A71 1997–
2006 

2007–
2015 

– 0.66988 0.18514 S46A 
S48A 

External 1 CV-A16 1997–
2006 

2007–
2015 

– 0.83335 0.28831 S46B 
S48B 

External 2 EV-A71 1997–
2006 

2007–
2015 

– 0.06323 0.63783 S46C 
S48C 

External 2 CV-A16 1997–
2006 

2007–
2015 

– 0.58955 0.56911 S46D 
S48D 

Table S8: Comparison of internal and external predictability, with 1997 as start 
year. 𝑅𝑅2 of observed data against predicted model fit by test, model, and serotype, 

aggregated to 4-week bins, for the entire time series (1997 to 2015), the duration of the 
training set (1997 to 2006), and the duration of the testing set (2007 to 2015). 
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Test Model Serotype Training 
set 

Testing 
set 

𝑹𝑹𝟐𝟐 
2000–2015 

𝑹𝑹𝟐𝟐 
2000–2009 

𝑹𝑹𝟐𝟐 
2010–2015 

Figures 

Internal 1 EV-A71 2000–
2015 

NA 0.43562 0.62887 0.15934 S26B 
S44A 

Internal 1 CV-A16 2000–
2015 

NA 0.61176 0.72289 0.48581 S26D 
S44B 

Internal 2 EV-A71 2000–
2015 

NA 0.75223 0.87690 0.55856 S36B 
S44C 

Internal 2 CV-A16 2000–
2015 

NA 0.63901 0.69269 0.60963 S36D 
S44D 

External 1 EV-A71 2000–
2009 

2010–
2015 

– 0.62547 0.74123 S47A 
S49A 

External 1 CV-A16 2000–
2009 

2010–
2015 

– 0.71913 0.49196 S47B 
S49B 

External 2 EV-A71 2000–
2009 

2010–
2015 

– 0.44019 0.52971 S47C 
S49C 

External 2 CV-A16 2000–
2009 

2010–
2015 

– 0.66015 0.62536 S47D 
S49D 

Table S9: Comparison of internal and external predictability, with 2000 as start 
year. 𝑅𝑅2 of observed data against predicted model fit by test, model, and serotype, 

aggregated to 4-week bins, for the entire time series (2000 to 2015), the duration of the 
training set (2000 to 2009), and the duration of the testing set (2010 to 2015). 
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S8. Revisiting HFMD serotype interactions in China 
 
The dynamics of EV-A71 in China have been reported to be qualitatively different from 
those in Japan: in China, the serotype has been shown to display annual cycles since 
HFMD became a notifiable disease in 2008 [10]. The drivers of these differences have 
yet to be systematically explored, and is an important area for future work. An additional 
wrinkle could be due to differences in the surveillance and sampling methodologies: 
because there had been so many reported HFMD cases in China (due to its status as a 
notifiable disease), the protocol involved sampling the first five mild cases per location 
per month in addition to all severe cases [10]. 
 
In our previous analysis [22] on HFMD in China using weekly virologic and syndromic 
reports between 2009 and 2013 by province and the two-serotype TSIR model, we 
estimated the population-weighted mean duration and strength of cross-protection 
following infection with EV-A71 or CV-A16 to be 9.95 weeks (95% CI: 3.31, 23.40) in 
68% (95% CI: 37%, 96%) of the population, resulting in a mean duration of cross-
protection of 6.77 weeks (95% CI: 2.50, 10.03). While we were able to detect a robust 
signature of herd immunity driving the outbreak dynamics of HFMD in China, we 
assumed cross-immunity to be symmetric in light of the necessarily short length of these 
time series. 
 
In Figure S50 we show abridged results of re-analyzing the Chinese data, now 
incorporating an asymmetry in cross-immunity. We fixed the 𝑘𝑘 values at those optimized 
in the Japanese data (i.e., 𝑘𝑘 = 8 weeks of complete cross-immunity against CV-A16 
after infection with EV-A71, and 𝑘𝑘 = 39 weeks of complete cross-immunity against EV-
A71 after infection with CV-A16, and also setting 𝛼𝛼1 at 0.975), and fit all of the other 
parameters in this same framework. We did this for each of the four direct-controlled 
municipalities of China (Beijing, Chongqing, Shanghai, and Tianjin), which exhibit 
different seasonal patterns of HFMD. In line with our expectations, we find that including 
an asymmetric cross-protection gives reasonable model fits in terms of forward 
simulations. 
 
We also previously showed that EV-A71 vaccination should not lead to a competitive 
release of CV-A16 [22], since we estimated cross-protection against CV-A16 following 
infection with EV-A71 to be sufficiently low that it would not lead to an increase in CV-
A16 (though there are complexities introduced by factors such as the interactions of 
vaccination with seasonality [28]). We would expect to arrive at similar qualitative 
conclusions in the Japanese context, since we estimate the cross-protective effect of 
EV-A71 infection on CV-A16 to be similarly low. 
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Figure S50: Deterministic two-serotype TSIR output for EV-A71 and CV-A16 in 

China with asymmetric cross-protection, 2010 to 2013. Observed time series (black) 
against predicted model fit for EV-A71 (green) and CV-A16 (red), adjusted for reporting 

rate, in: (A) Beijing. (B) Tianjin. (C) Shanghai. (D) Chongqing. 
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S9. Simulation studies 
 
Checking susceptible reconstruction in the two-serotype TSIR model 
 
The two-serotype TSIR model does not distinguish between primary and secondary 
infection. In other words, because the two-serotype susceptible reconstruction 
methodology yields a time series of 𝑆𝑆𝑡𝑡,𝑖𝑖, the number of individuals susceptible to 
serotype 𝑖𝑖 at time 𝑡𝑡 (see Section S6), we do not know if an individual who is about to 
become infected with one serotype has previously been infected with the other serotype 
or not. We tested the validity of this procedure by constructing a two-serotype, discrete-
time SIR model with cross-protection (this is known as the SICR model: the 
compartments are shown in the center inset of Figure S51, and it is adapted from the 
continuous-time model presented in [29]). We made TSIR-like assumptions, such as 
again that every individual gets infected with both serotypes over the course of their life, 
and deaths are not explicitly modeled because it is assumed that the infections precede 
death for childhood diseases such as HFMD, in developed settings such as Japan. 
 
There are 10 compartments in this full model adopting the naming convention of 
[immune status to EV-A71] [immune status to CV-A16], allowing for the possible 
statuses of susceptible (𝑆𝑆), infected (𝐼𝐼), cross-protected against the other serotype 
following infection (𝐶𝐶), or recovered (𝑅𝑅). This framework distinguishes between primary 
and secondary infection, and we deterministically simulated from this full model under a 
given parameter set: here, we simulated weak, asymmetric cross-protection as in the 
main analysis, fixing cross-protection values at 𝑘𝑘 = 7 weeks following primary infection 
with EV-A71 and 𝑘𝑘 = 38 weeks following primary infection with CV-A16, along with 𝛼𝛼1 = 
0.97 and identical 𝛽𝛽𝑠𝑠 for the two serotypes, as shown in Figures S52A–B. 
 
Taking the output of this full model (assuming perfect reporting), we aggregated the 
simulated primary and secondary infection with each serotype to generate time series 
similar to our observed data, namely counts of infection with a serotype at each time-
step: 𝐼𝐼𝑡𝑡,𝐸𝐸𝐸𝐸–𝐴𝐴71 = 𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐼𝐼𝐼𝐼𝑡𝑡, and 𝐼𝐼𝑡𝑡,𝐶𝐶𝐶𝐶–𝐴𝐴16 = 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑅𝑅𝑅𝑅𝑡𝑡 (Figures S52C–D). We then 
performed two-serotype susceptible reconstruction (generating 𝑆𝑆𝑡𝑡,𝐸𝐸𝐸𝐸–𝐴𝐴71 and 𝑆𝑆𝑡𝑡,𝐶𝐶𝐶𝐶–𝐴𝐴16 as 
described in Section S6) based on 𝐼𝐼𝑡𝑡,𝐸𝐸𝐸𝐸–𝐴𝐴71 and 𝐼𝐼𝑡𝑡,𝐶𝐶𝐶𝐶–𝐴𝐴16, as well as the simulated 
demographic parameters. We compared these reconstructed susceptibles (green and 
red lines in Figure S53) against two different types of susceptibles: (1) 𝑆𝑆𝑡𝑡,𝐸𝐸𝐸𝐸–𝐴𝐴71 = 𝑆𝑆𝑆𝑆𝑡𝑡 +
𝑆𝑆𝑆𝑆𝑡𝑡 and 𝑆𝑆𝑡𝑡,𝐶𝐶𝐶𝐶–𝐴𝐴16 = 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑅𝑅𝑅𝑅𝑡𝑡, which represent ‘effective’ susceptibles (i.e., those who 
could become infected with a given serotype), and (2) 𝑆𝑆𝑡𝑡,𝐸𝐸𝐸𝐸–𝐴𝐴71 = 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑡𝑡 
and 𝑆𝑆𝑡𝑡,𝐶𝐶𝐶𝐶–𝐴𝐴16 = 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐶𝐶𝐶𝐶𝑡𝑡 + 𝑅𝑅𝑅𝑅𝑡𝑡, which represent true or ‘immunological’ 
susceptibles (i.e., those who have never been infected with a given serotype). The 
discrepancy between (1) and (2), or 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑡𝑡 and 𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐶𝐶𝐶𝐶𝑡𝑡, include individuals who are 
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immunologically naive to the serotype under consideration, but who could not become 
infected with it during the next time-step. 
 
In Figure S53 we see that two-serotype susceptible reconstruction is able to recover the 
qualitative temporal patterns of such ‘effective’ susceptibles (black lines) more closely 
than it can of ‘immunological’ susceptibles (grey lines). For ease of comparison, we plot 
𝑍𝑍𝑡𝑡,𝑖𝑖, or the deviations around the mean number of susceptible individuals to serotype 𝑖𝑖 
(𝑆𝑆𝚤𝚤� ) at time 𝑡𝑡. The simple two-serotype TSIR model with cross-protection is reasonable 
to a first approximation since the difference between ‘immunological’ and ‘effective’ 
susceptibles, which are 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑡𝑡 and 𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐶𝐶𝐶𝐶𝑡𝑡, represent a small proportion of the 
population at any point in time (taking on a maximum value of 1.4% over the entire time 
series). Therefore, the two-serotype susceptible reconstruction procedure is adequately 
able to account for not having the immune status to both serotypes in the data. 
 
Testing the elasticity of periodicity to cross-protection parameters: methodology 
 
To construct Figure 6 in the main text, we simulated time series from the deterministic 
two-serotype TSIR model, varying the durations of cross-protection after CV-A16 
infection from 0 to 52 weeks. For comparability, we elected to fix the duration of cross-
protection after EV-A71 infection at its optimal value of 𝑘𝑘𝐸𝐸𝐸𝐸–𝐴𝐴71 = 8 weeks. We ran 
simulations for 50 years under realistic demography, fitting all other parameters 
(besides cross-protection) and removing the initial 30 years to run out the transient 
dynamics. After reaching the endemic equilibrium (with seasonality), we obtained 
stationary time series of the two serotypes. 
 
We calculated the periodogram of the log-transform of each stationary time series and 
extracted the spectral density as a function of the period (with a maximum of 6 years), 
using the spectrum function in R. The periodogram is appropriate here since the time 
series is at equilibrium so there are no long-term temporal changes (as opposed to in 
the real data where it was more appropriate to use wavelet analysis, see Section S3). 
The spectral densities of log-transformed EV-A71 and CV-A16 incidence are smoothed 
and obtained for each discrete value of 𝑘𝑘𝐶𝐶𝐶𝐶–𝐴𝐴16 between 0 and 52 weeks. To assess the 
statistical significance of peaks in the observed spectrum, we compared it to a null white 
noise spectrum, which has an even distribution of variance over frequency (period-1) 
[30]. This was generated by randomly re-ordering each time series and calculating its 
spectral density, repeated over 100,000 iterations. The 2.5th quantile of the simulations 
at each frequency is determined to be the lower bound for significance. Thus Figure 6 in 
the main text is a composite pseudo bifurcation diagram, showing only the magnitude of 
spectral densities that are significant at this threshold.  
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Figure S51: Simulated time series from the full two-serotype SICR model. Inset 
figure (at center) shows flow between 10 compartments, corresponding to the time 

series (simulated over 20 years) shown and labeled on the perimeter. Births 
immediately enter the SS class. The 𝑘𝑘1 and 𝑘𝑘2 indicate the duration of cross-protection 

following primary infection with EV-A71 and CV-A16, respectively. The green time 
series refer to EV-A71 infection, and the red time series refer to CV-A16 infection. 
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Figure S52: Seasonal transmission rate and aggregated time series from the full 

two-serotype SICR model. (A) 𝛽𝛽𝑠𝑠 values for EV-A71 (x-axis is week). (B) 𝛽𝛽𝑠𝑠 values for 
CV-A16. (C) Time series of 𝐼𝐼𝑡𝑡,𝐸𝐸𝐸𝐸–𝐴𝐴71 = 𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐼𝐼𝐼𝐼𝑡𝑡 (x-axis is year). (D) Time series of 

𝐼𝐼𝑡𝑡,𝐶𝐶𝐶𝐶–𝐴𝐴16 = 𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑅𝑅𝑅𝑅𝑡𝑡. 
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Figure S53: Susceptibles from the full two-serotype SICR model and 

reconstructed susceptibles from its aggregated time series. (A) 𝑍𝑍𝑡𝑡 (the deviations 
around the mean number of susceptible individuals (𝑆𝑆̅) at time 𝑡𝑡) for EV-A71 as 

calculated from the time series of ‘effective’ susceptibles (black), the time series of 
‘immunological’ susceptibles (grey), and susceptibles as reconstructed from the two-
serotype TSIR model (green). (B) 𝑍𝑍𝑡𝑡 for CV-A16 as calculated from the time series of 
‘effective’ susceptibles (black), the time series of ‘immunological’ susceptibles (grey), 

and susceptibles as reconstructed from the two-serotype TSIR model (red). 
  



86 

Supplementary References 
 
1. Taniguchi K et al. 2007 Overview of infectious disease surveillance system in Japan, 

1999-2005. J Epidemiol 17 Suppl, S3-13. (doi:10.2188/jea.17.S3) 
2. Infectious Agent Surveillance Report. 2005 Herpangina as of July 2005, Japan. See 

https://idsc.niid.go.jp/iasr/26/307/tpc307.html (accessed on 13 June 2018). 
3. Tsuguto Fujimoto et al. 2012 Hand, Foot, and Mouth Disease Caused by 

Coxsackievirus A6, Japan, 2011. Emerg. Infect. Dis. J. 18, 337. 
(doi:10.3201/eid1802.111147) 

4. Zeng H et al. 2015 The Epidemiological Study of Coxsackievirus A6 revealing Hand, 
Foot and Mouth Disease Epidemic patterns in Guangdong, China. Sci Rep 5, 
10550. (doi:10.1038/srep10550) 

5. Ogi M, Yano Y, Chikahira M, Takai D, Oshibe T, Arashiro T, Hanaoka N, Fujimoto T, 
Hayashi Y. 2017 Characterization of genome sequences and clinical features of 
coxsackievirus A6 strains collected in Hyogo, Japan in 1999-2013. J Med Virol 
(doi:10.1002/jmv.24798) 

6. Flett K et al. 2012 Hand, Foot, and Mouth Disease Caused by Coxsackievirus A6. 
Emerg Infect Dis 18, 6. (doi:10.3201/eid1810.120813) 

7. Hongyan G, Chengjie M, Qiaozhi Y, Wenhao H, Juan L, Lin P, Yanli X, Hongshan 
W, Xingwang L. 2014 Hand, foot and mouth disease caused by coxsackievirus A6, 
Beijing, 2013. Pediatr Infect J 33, 1302–1303. 
(doi:10.1097/INF.0000000000000467) 

8. Bian L, Wang Y, Yao X, Mao Q, Xu M, Liang Z. 2015 Coxsackievirus A6: a new 
emerging pathogen causing hand, foot and mouth disease outbreaks worldwide. 
Expert Rev Anti Infect Ther 13, 1061–1071. (doi:10.1586/14787210.2015.1058156) 

9. Feder HM, Bennett N, Modlin JF. 2014 Atypical hand, foot, and mouth disease: a 
vesiculobullous eruption caused by Coxsackie virus A6. Lancet Infect. Dis. 14, 83–
86. (doi:10.1016/S1473-3099(13)70264-0) 

10. Xing W et al. 2014 Hand, foot, and mouth disease in China, 2008-12: an 
epidemiological study. Lancet Infect Dis 14, 308–318. (doi:10.1016/S1473-
3099(13)70342-6) 

11. Grenfell BT, Bjørnstad ON, Kappey J. 2001 Travelling waves and spatial hierarchies 
in measles epidemics. Nature 414, 716–723. (doi:10.1038/414716a) 

12. Fisher L, Wakefield J, Bauer C, Self S. 2017 Time series modeling of pathogen-
specific disease probabilities with subsampled data. Biometrics 73, 283–293. 
(doi:10.1111/biom.12560) 

13. Cazelles B, Chavez M, Magny GC de, Guégan J-F, Hales S. 2007 Time-dependent 
spectral analysis of epidemiological time-series with wavelets. J R Soc Interface 4, 
625–636. (doi:10.1098/rsif.2007.0212) 



87 

14. Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, Stenseth NC. 
2008 Wavelet analysis of ecological time series. Oecologia 156, 287–304. 
(doi:10.1007/s00442-008-0993-2) 

15. Sultan B, Labadi K, Guégan J-F, Janicot S. 2005 Climate drives the meningitis 
epidemics onset in west Africa. PLoS Med 2, e6. 
(doi:10.1371/journal.pmed.0020006) 

16. Grinsted A, Moore JC, Jevrejeva S. 2004 Application of the cross wavelet transform 
and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11, 
561–566. (doi:10.5194/npg-11-561-2004) 

17. Okabe N. 2009 Annual Report on Findings of Infectious Agents in Japan, 2008. Jpn 
J Infect Dis 62, 1–18. 

18. Finkenstädt BF, Grenfell BT. 2000 Time series modelling of childhood diseases: a 
dynamical systems approach. J R Stat Soc Ser C Appl Stat 49, 187–205. 
(doi:10.1111/1467-9876.00187) 

19. Bjørnstad ON, Finkenstädt BF, Grenfell BT. 2002 Dynamics of measles epidemics: 
estimating scaling of transmission rates using a time series SIR model. Ecol Monogr 
72, 169–184. (doi:10.2307/3100023) 

20. Grenfell BT, Bjørnstad ON, Finkenstädt BF. 2002 Dynamics of measles epidemics: 
scaling noise, determinism, and predictability with the TSIR model. Ecol Monogr 72, 
185–202. (doi:10.2307/3100024) 

21. Finkenstädt BF, Bjørnstad ON, Grenfell BT. 2002 A stochastic model for extinction 
and recurrence of epidemics: estimation and inference for measles outbreaks. 
Biostatistics 3, 493–510. (doi:10.1093/biostatistics/3.4.493) 

22. Takahashi S et al. 2016 Hand, Foot, and Mouth Disease in China: Modeling 
Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination. 
PLoS Med 13, e1001958. (doi:10.1371/journal.pmed.1001958) 

23. Glass K, Xia Y, Grenfell BT. 2003 Interpreting time-series analyses for continuous-
time biological models--measles as a case study. J Theor Biol 223, 19–25. 
(doi:10.1016/S0022-5193(03)00031-6) 

24. Becker AD, Grenfell BT. 2017 tsiR: An R package for time-series Susceptible-
Infected-Recovered models of epidemics. PLOS ONE 12, e0185528. 
(doi:10.1371/journal.pone.0185528) 

25. Reich NG et al. 2013 Interactions between serotypes of dengue highlight 
epidemiological impact of cross-immunity. J R Soc Interface 10, 20130414. 
(doi:10.1098/rsif.2013.0414) 

26. Nau R. 2018 Estimation, Out-of-sample Validation, and Forecasting. See 
https://people.duke.edu/~rnau/three.htm (accessed on 13 June 2018). 

27. Sugihara G, May RM. 1990 Nonlinear forecasting as a way of distinguishing chaos 
from measurement error in time series. Nature 344, 734–741. 
(doi:10.1038/344734a0) 



88 

28. Grassly NC, Fraser C. 2006 Seasonal infectious disease epidemiology. Proc. R. 
Soc. Lond. B Biol. Sci. 273, 2541–2550. (doi:10.1098/rspb.2006.3604) 

29. Shrestha S, King AA, Rohani P. 2011 Statistical Inference for Multi-Pathogen 
Systems. PLoS Comput Biol 7, e1002135. (doi:10.1371/journal.pcbi.1002135) 

30. Wearing HJ. 2010 Spectral Analysis in R. See 
https://ms.mcmaster.ca/~bolker/eeid/2010/Ecology/Spectral.pdf (accessed on 13 
June 2018). 

 


	Table of Contents
	Supplementary Text
	S1. Data sources and exploratory spatio-temporal analysis
	Table S1: Data structure by week, 1982 to 2015. NA: not available.
	Figure S1: Demographic data of Japan, 1982 to 2015. (A) Population size, by week. (B) Live births, by week.
	Figure S2: Weekly time series of all counts of HFMD-causing enteroviruses, 2000 to 2015. (A) EV-A71. (B) CV-A16. (C) CV-A10. (D) Echoviruses. (E) Coxsackievirus B. (F) “Other CV-A” (presumably CV-A6). Note that the y-axis range varies by panel.
	Figure S3: Scatterplot matrix of causative serotypes associated with HFMD, 2000 to 2015. Counts of raw EV-A71 (each point corresponds to a year), CV-A16, CV-A10, Echoviruses, Coxsackievirus B, “Other CV-A” (presumably CV-A6), and total reported HFMD c...
	Figure S4: Empirical comparisons between the two focal serotypes (EV-A71 and CV-A16) and CV-A6, 2000 to 2015. (A) Annual detections of raw EV-A71 (y-axis) against raw CV-A6 (x-axis, log scale). (B) Annual detections of raw CV-A16 (y-axis) against raw ...
	Figure S5: Virologic counts of EV-A71 by year and by prefecture, 2000 to 2015. (A) Time series of EV-A71 counts aggregated across all of Japan, by week. (B) Heat map of EV-A71 counts, by year and by prefecture (𝑛 = 47). Prefectures are sorted in desc...
	Figure S6: Virologic counts of CV-A16 by year and by prefecture, 2000 to 2015. (A) Time series of CV-A16 counts aggregated across all of Japan, by week. (B) Heat map of CV-A16 counts, by year and by prefecture (𝑛 = 47). Prefectures are sorted in desc...
	Figure S7: Reported syndromic HFMD cases by week and by prefecture, 2000 to 2015. (A) Time series of HFMD reports aggregated across all of Japan, by week. (B) Heat map of HFMD reports, by week and by prefecture (𝑛 = 47). Prefectures are sorted in des...
	Figure S8: Reported syndromic HFMD by week for selected prefectures, 2000 to 2015. (A) Tokyo. (B) Osaka. (C) All prefectures except Okinawa. (D) Okinawa. Note that the y-axis range varies by panel.
	Figure S9: Non-parametric spatial correlation function of HFMD in Japan, 2000 to 2015. The 95% confidence envelope is the blue polygon. The red dashed line indicates the regional average correlation (the regional average correlation of 𝑦 = 0.539 is r...

	S2. Inferring serotype counts, from serotype proportions and syndromic counts
	Table S2: Three parameterizations and resulting ,𝑹-𝟐. of a temporal kernel to estimate serotype proportions. ,𝑅-2. value calculated by fitting a simple linear regression to observed and expected counts (see Figure S10). *Not normalized.
	Figure S10: Accuracy of an HFMD case being classified as a specific serotype based on three parameterizations, from simulated data. (A) Observed (x-axis) against expected (y-axis) probabilities (𝑝) for EV-A71 using method (1) (each point corresponds ...

	S3. Intrinsic (within-serotype) patterns
	Figure S11: Autocorrelation functions (ACF) for EV-A71 and CV-A16, 1997 to 2015. (A) ACF (correlation on y-axis) for weekly raw EV-A71 series by time (x-axis in years) with a maximum lag of 5 years. (B) ACF for weekly first-differenced EV-A71 series. ...
	Figure S12: Wavelet analysis of various transformations of EV-A71, 1982 to 2015. (A) Raw counts of EV-A71. (B) Wavelet power spectrum of square root-transformed EV-A71 (x-axis is time (year), y-axis is the period (in years), color is the power spectru...
	Figure S13: Wavelet analysis of various transformations of CV-A16, 1982 to 2015. (A) Raw counts of CV-A16. (B) Wavelet power spectrum of square root-transformed CV-A16 (x-axis is time (year), y-axis is the period (in years), color is the power spectru...
	Table S3: Metrics for the timing, size, and shape of an annual epidemic curve. Each of these metrics is applicable for either serotype-specific counts or all-cause HFMD, and can be extended for temporal comparisons at years 𝑡 = 1 to 𝑇-1 against year...
	Figure S14: Normalized year-by-year weekly EV-A71 epidemic curve, with 95% confidence intervals for the center of gravity (blue line), 1982 to 2015. Year label is above. Note that the y-axis range varies by panel.
	Figure S15: Normalized year-by-year weekly CV-A16 epidemic curve, with 95% confidence intervals for the center of gravity (blue line), 1982 to 2015. Year label is above. Note that the y-axis range varies by panel.
	Figure S16: Scatterplot matrix of within-year metrics of EV-A71 (“EV”) and HFMD, without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point corresponds to a year), peak week, onset week, total number of counts (“sum”), maximum ...
	Figure S17: Scatterplot matrix of EV-A71 (“EV”)-specific comparisons with a one-year temporal lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point corresponds to a year), peak week, onset week, total number of counts (“sum”), maximum num...
	Figure S18: Scatterplot matrix of within-year metrics of CV-A16 (“CV”) and HFMD, without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point corresponds to a year), peak week, onset week, total number of counts (“sum”), maximum ...
	Figure S19: Scatterplot matrix of CV-A16 (“CV”)-specific comparisons with a one-year temporal lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point corresponds to a year), peak week, onset week, total number of counts (“sum”), maximum num...

	S4. Extrinsic (between-serotype) patterns
	Figure S20: Cross-correlation functions (CCF) for EV-A71 and CV-A16, 1997 to 2015. (A) CCF (cross-correlation on y-axis) for weekly raw EV-A71 and CV-A16 series by time (x-axis in years) with a maximum lag of 2 years. (B) CCF for weekly first-differen...
	Figure S21: Cross-wavelet analysis of various transformations of EV-A71 and CV-A16, 1982 to 2015. (A) Raw virologic counts of EV-A71 (green) and CV-A16 (red). (B) Cross-wavelet power spectrum of square root-transformed series (x-axis is time (year), y...
	Figure S22: Cross-wavelet analysis of EV-A71 and CV-A16 with phase arrows, 1982 to 2015. Cross-wavelet power spectrum of square root-transformed series (x-axis is time (year), y-axis is the period (in years), color is the power spectrum), with cone of...
	Figure S23: Scatterplot matrix of within-year metrics of EV-A71 (“EV) and CV-A16 (“CV”), without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point corresponds to a year), peak week, onset week, total number of counts (“sum”), ...
	Figure S24: Scatterplot matrix of metrics of EV-A71 (“EV”) and CV-A16 (“CV”) with a one-year lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point corresponds to a year), peak week, onset week, total number of counts (“sum”), maximum numb...

	S5. The TSIR model
	Figure S25: Flow diagram of the data stream for syndromic and virologic surveillance in Japan, from left (true HFMD cases per a week: unobserved) to right (syndromic HFMD reports and serotyped cases per week: grey boxes, observed). The 𝑝, 𝑞, and 𝑟 ...
	Figure S26: Deterministic one-serotype TSIR output for EV-A71 and CV-A16, 2000 to 2015 (analogue to Figures 3A–D in main text). (A) ,𝛽-𝑠. values for EV-A71 (x-axis is week of year). (B) Observed time series (black) against predicted model fit (green...
	Table S4: Epidemiological parameters from the one-serotype model, 2000 to 2015. Reporting rate, mean proportion susceptible, mean transmission rate, and coefficient of variation in transmission rate, by serotype. CV: coefficient of variation.
	Table S5: Parameter specifications and estimates for the one-serotype TSIR model in the main analysis (top row) and in the sensitivity analyses, 1997 to 2015.
	Figure S27: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S1 from Table S5. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S28: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S2 from Table S5. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S29: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S3 from Table S5. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S30: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S4 from Table S5. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S31: Testing a TSIR model assumption. Scenario 1: Assume 100% of births get infected (expected for measles). (A) Cumulative cases (red) and cumulative births (blue) in London over time (x-axis), and fitted regression line (green). (B) Estimated...
	Figure S32: Testing a TSIR model assumption. Scenario 2: Assume only 80% of births get infected; in the model, inflate number of cases to correct for cases representing only a subset of all births. (A) Cumulative cases (red) and cumulative births (blu...
	Figure S33: Testing a TSIR model assumption. Scenario 3: Assume only 80% of births get infected; in the model, deflate number of births to correct for not all births getting infected. (A) Cumulative cases (red) and cumulative births (blue) in London o...

	S6. The two-serotype TSIR model
	Figure S34: Profile likelihood surface over pairs of cross-protection parameters 𝒌, on data from 1997 to 2015. Duration of cross-protection against CV-A16 following infection with EV-A71 (x-axis in weeks), duration of cross-protection against EV-A71 ...
	Figure S35: Mean ,𝑹-𝟐. and internal predictability from forward simulations of the two-serotype TSIR model, 1997 to 2015. (A) ,𝑅-2. value averaged between EV-A71 and CV-A16 and aggregated over 4-week bins, at cross-protection values of each of the ...
	Figure S36: Deterministic two-serotype TSIR output for EV-A71 and CV-A16, 2000 to 2015 (analogue to Figures 5A–D in main text). (A) ,𝛽-𝑠. values for EV-A71 (x-axis is week of year). (B) Observed time series (black) against predicted model fit (green...
	Table S6: Epidemiological parameters from the two-serotype model, 2000 to 2015. Reporting rate, mean proportion susceptible, mean transmission rate, and coefficient of variation in transmission rate, by serotype. CV: coefficient of variation. *Values ...
	Figure S37: Inferred susceptibles from the one-serotype and two-serotype models, 1997 to 2015. (A) ,𝑆-𝑡.∕,𝑁-𝑡. for EV-A71 from the one-serotype (light green) and two-serotype (dark green) TSIR models (left y-axis), along with observed time series ...
	Table S7: Parameter specifications and estimates for the two-serotype TSIR model in the main analysis (top row) and in the sensitivity analyses, 1997 to 2015. All models are fixed with 𝑘 = 8 weeks of complete cross-immunity against CV-A16 after infec...
	Figure S38: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S1 from Table S7. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S39: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S2 from Table S7. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S40: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S3 from Table S7. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S41: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S4 from Table S7. (A) Observed time series (black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time s...
	Figure S42: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S5 from Table S7. (A) ,𝛽-𝑠. values for EV-A71, where values for the two serotypes are constrained to have the same shape (x-axis is week of year). (B) Observed time series (b...

	S7. Comparison of one-serotype and two-serotype model fit
	Figure S43: Internal predictability of the one-serotype and two-serotype TSIR models, 1997 to 2015. Observed data (x-axis) against model-predicted time series (y-axis), adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-seroty...
	Figure S44: Internal predictability of the one-serotype and two-serotype TSIR models, 2000 to 2015. Observed data (x-axis) against model-predicted time series (y-axis), adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-seroty...
	Figure S45: Cross-wavelet analysis of observed data and the output of one-serotype and two-serotype TSIR models, 1997 to 2015. Cross-wavelet power spectrum of square root-transformed observed data and model-predicted time series (x-axis is time (year)...
	Figure S46: Out-of-sample model predictions of the one-serotype and two-serotype TSIR models, on testing data from 2007 to 2015 (fit to training data from 1997 to 2006). Observed time series (black) against predicted out-of-sample model fit (blue (EV-...
	Figure S47: Out-of-sample model predictions of the one-serotype and two-serotype TSIR models, on testing data from 2010 to 2015 (fit to training data from 2000 to 2009). Observed time series (black) against predicted out-of-sample model fit (blue (EV-...
	Figure S48: External predictability of the one-serotype and two-serotype TSIR models, on testing data from 2007 to 2015 (fit to training data from 1997 to 2006). Observed data (x-axis) against out-of-sample, model-predicted time series (y-axis), adjus...
	Figure S49: External predictability of the one-serotype and two-serotype TSIR models, on testing data from 2010 to 2015 (fit to training data from 2000 to 2009). Observed data (x-axis) against out-of-sample, model-predicted time series (y-axis), adjus...
	Table S8: Comparison of internal and external predictability, with 1997 as start year. ,𝑅-2. of observed data against predicted model fit by test, model, and serotype, aggregated to 4-week bins, for the entire time series (1997 to 2015), the duration...
	Table S9: Comparison of internal and external predictability, with 2000 as start year. ,𝑅-2. of observed data against predicted model fit by test, model, and serotype, aggregated to 4-week bins, for the entire time series (2000 to 2015), the duration...

	S8. Revisiting HFMD serotype interactions in China
	Figure S50: Deterministic two-serotype TSIR output for EV-A71 and CV-A16 in China with asymmetric cross-protection, 2010 to 2013. Observed time series (black) against predicted model fit for EV-A71 (green) and CV-A16 (red), adjusted for reporting rate...

	S9. Simulation studies
	Figure S51: Simulated time series from the full two-serotype SICR model. Inset figure (at center) shows flow between 10 compartments, corresponding to the time series (simulated over 20 years) shown and labeled on the perimeter. Births immediately ent...
	Figure S52: Seasonal transmission rate and aggregated time series from the full two-serotype SICR model. (A) ,𝛽-𝑠. values for EV-A71 (x-axis is week). (B) ,𝛽-𝑠. values for CV-A16. (C) Time series of ,𝐼-𝑡,𝐸𝑉–𝐴71.=,𝐼𝑆-𝑡.+,𝐼𝑅-𝑡. (x-axis is...
	Figure S53: Susceptibles from the full two-serotype SICR model and reconstructed susceptibles from its aggregated time series. (A) ,𝑍-𝑡. (the deviations around the mean number of susceptible individuals (,𝑆.) at time 𝑡) for EV-A71 as calculated fr...


	Supplementary References

