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Supplementary Text
S1. Data sources and exploratory spatio-temporal analysis

Data sources: time series data

The components of data that are used in this analysis are collated from a variety of
sources, with the data structure color-coded in Table S1 (the dataset is available as
supplementary material). The surveillance data are from the National Epidemiological
Surveillance for Infectious Diseases (NESID) system, maintained at Japan’s National
Institute of Infectious Diseases (NIID).

The weekly number of syndromic HFMD cases per sentinel site is reported through
NIID’s Infectious Diseases Weekly Report (IDWR) (red cells in Table S1). The number
of sites in the national sentinel network (approximately 3,000 pediatric clinics or
hospitals with a pediatric ward) (yellow cells in Table S1) was available by year from
NIID, reference [1], and IDWR. By definition, syndromic HFMD cases per sentinel site is
the total number of syndromic HFMD cases reported for a given week across all
sentinel sites, divided by the total number of sentinel sites.

The weekly number of virologic counts of EV-A71 and CV-A16, available from 1982, is
reported through NIID’s Infectious Agents Surveillance Report (IASR) (green cells in
Table S1). The weekly numbers of virologic counts of all other serotypes are also from
IASR (blue cells in Table S1), which were available beginning in 2000. In addition to EV-
A71 and CV-A16, these are separated into CV-A10, Echoviruses, Coxsackievirus B,
and “Other CV-A” (presumably CV-A6), shown in Figure S2. Since the addition of PCR
as a reporting item for virus detection in 2000, the proportion of detections by PCR
(instead of virus culture) has increased (see Figure 4 in [2]).

The monthly number of births and population size in Japan (purple cells in Table S1)
was obtained from the Statistics Bureau of the Japanese Ministry of Internal Affairs and
Communications (http://www.stat.go.jp) and interpolated to the weekly temporal scale
(Figure S1).

Data sources: literature on virologic evidence of asymmetry

We reviewed published studies for evidence to determine if our proposed hypothesis of
an asymmetric cross-protection between EV-A71 and CV-A16 was consistent with the
virologic literature. Publications were identified using the keywords of “Enterovirus A71",
“Coxsackievirus A16”, and “cross-reactivity”, “cross-neutralization”, “cross-protection”,


http://www.stat.go.jp/

“cross-immunity”, or “vaccination” in PubMed. We then looked at studies either cited in
or citing the initially identified publications, and supplemented our findings with
additional relevant literature collated by co-authors.

Exploratory spatio-temporal analysis

In Figure S3 we plot the annual virologic notifications of each serotype between 2000
and 2015, along with total annual syndromic HFMD notifications. We observe a
negative feedback between EV-A71 and CV-A16 notifications (upper left scatterplot), as
well as a positive association between CV-A6 notifications and HFMD, which is in line
with the documented recent large increase in HFMD cases due to this serotype [3]. We
also looked for empirical signatures of an interaction between EV-A71 and CV-AG, as
well as between CV-A16 and CV-AG, in Figure S4 (following the methods behind Figure
4 in the main text, also see Section S3). This analysis was necessarily limited to the
time period between 2000 and 2015. Generally, the annual epidemic size of CV-A6 did
not modify the annual epidemic timing of EV-A71 or CV-A16. The exception was
between the three ‘large’ years of CV-A6 (2011, 2013, and 2015, shown in blue on
Figure S3 and Figure S4C) and EV-A71 epidemic timing.

As a side note: there have been reports of recent genetic changes in CV-A6 in China
and Japan, though the sample sizes have been small [4,5]. Previously, CV-A6 was
mainly a cause of herpangina [3], but is increasingly associated with HFMD followed by
onychomadesis (nail shedding), as well as large blisters extending to the legs and
buttocks [6,7]. CV-A6 infection in Japan is concentrated in young children but the age
profile of CV-A6 infection outside of the Asia-Pacific region is older [8,9].

Since the clearest interactions are between EV-A71 and CV-A16, and since the counts
of non-EV-A71, non-CV-A16 serotypes are relatively low, we ultimately chose to focus
our analysis on the dynamics of these two serotypes. Starting in 2000, the counts of the
other serotypes are taken into account when estimating the probability of a virologically
tested HFMD case being caused by a specific serotype by week (see Section S2). As
stated in the main text, we focused on the time series using two different start years for
inference: 1997 (primary) and 2000 (secondary). The year 1997 was the start of the
current wave of HFMD outbreaks in the Asia-Pacific region, and also where the wavelet
signals yield clearest multi-annual cycles of EV-A71 (see Section S3). The year 2000
was when the sentinel reporting system was upgraded and data on all causative HFMD
serotypes became available, which lends additional information to the models.
However, the older (pre-2000) data is qualitatively consistent with the dynamic signature
of the more recent (post-2000) data.



The virologic IASR data disaggregates serotype reports by the 47 prefectures of Japan
(aggregated by year). In the spatial virologic data from 2000 to 2015, we observe spatial
synchrony in the dynamics of EV-A71 (Figure S5) and CV-A16 (Figure S6) across the
country. The syndromic IDWR data also disaggregates HFMD reports by prefecture and
by week. In the spatial syndromic HFMD data from 2000 to 2015, we observe strong
overall correlation in within-year epidemic timing (Figure S7, with the heat map sorted
by data on prefecture-level population size in 2005, from the Statistics Bureau of the
Japanese Ministry of Internal Affairs and Communications). We note that the dynamics
in Okinawa, which is geographically isolated from the four main islands of Japan, are
not highly correlated with Tokyo (the capital), Osaka (the second most populated
prefecture), or the rest of the aggregated country (Figure S8). The twice-yearly peaks of
cases reported in Okinawa in 2002 and 2011 echo patterns of HFMD observed in
southern provinces of China [10], perhaps due to their comparable climatic conditions.

We also estimated the non-parametric spatial correlation function of syndromic HFMD
notifications between prefectures, using the longitude and latitude of the capital city of
each prefecture as its spatial location. We used 1,000 resamples to generate the
bootstrap null distribution, and estimated the regional average correlation to be 0.539.
We plot the estimated correlation function against distance in Figure S9, which indicates
high correlation of nearby prefectures and a marked decline over most of the
longitudinal extent of country. This was done using the Sncf function in the ncf package
in the R statistical software. These cursory analyses indicate that the dynamics in large
prefectures are highly correlated (i.e., more spatially correlated as the classic dataset of
pre-vaccination measles incidence in 954 towns and cities in England and Wales, see
Figure 4 in [11]) and suggest that aggregate patterns adequately capture the spatial
dynamics of HFMD in more populated prefectures. For the rest of this analysis, we
proceed with aggregate epidemiological models.



Cumulative| Year | Week of [Syndromic | Number | EV-A71 | CV-A16 | CV-A6 | All other | Births |Population
week year HFMD of virologic | virologic | virologic | HFMD (By) (N,)
cases per | sentinel | counts | counts | counts |serotype
sentinel sites (“Other | virologic
site CV-A”) | counts
1 1982 1 NA NA
2 1982 2 NA NA
3 1982 3 NA NA
939 1999 52 NA NA
940 2000 1
941 2000 2
1773 2015 52
1774 2015 53

Table S1: Data structure by week, 1982 to 2015. NA: not available.
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Figure S1: Demographic data of Japan, 1982 to 2015. (A) Population size, by week.
(B) Live births, by week.
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Figure S2: Weekly time series of all counts of HFMD-causing enteroviruses, 2000
to 2015. (A) EV-A71. (B) CV-A1l6. (C) CV-A10. (D) Echoviruses. (E) Coxsackievirus B.
(F) “Other CV-A” (presumably CV-A6). Note that the y-axis range varies by panel.




0 200 400 €00
I T O

EV-A71

200 400 800

4]

500
.

100 300
| S T
/

CV-A16

20 40 80
| T T T T |

'l Ccv-A10

,—//:_‘_-_'___ f—/
] Echo
9_/'\ ,l—/ /"
% [ ] 2 [ ]
. | / | cve
m:o___/"_"""‘*-—._ LRS- . \/
g [ ] [ ] [ ]
2 CV-A
. (CV-A8)
2______-"_._‘_._ __‘_-_._/’_’,._-
b J / HFMD [ &
sl ¥
T 0 a0 40 w0 100 W0 0 0 2 0 @ 1020 a4 05 15 2 25020 a0 1000000 oo

Figure S3: Scatterplot matrix of causative serotypes associated with HFMD, 2000

to 2015. Counts of raw EV-A71 (each point corresponds to a year), CV-A16, CV-A10,

Echoviruses, Coxsackievirus B, “Other CV-A” (presumably CV-A6), and total reported

HFMD cases. The lowess fit to each scatterplot is in red. Points corresponding to large
years of CV-AG6 notifications (i.e., 2011, 2013, and 2015) are in blue.
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Figure S4: Empirical comparisons between the two focal serotypes (EV-A71 and
CV-A16) and CV-A6, 2000 to 2015. (A) Annual detections of raw EV-A71 (y-axis)
against raw CV-A6 (x-axis, log scale). (B) Annual detections of raw CV-A16 (y-axis)
against raw CV-A6 (x-axis, log scale). (C) Center of gravity (COG, in weeks) of yearly
EV-A71 epidemics stratified by size of yearly CV-A6 epidemics (colors correspond to
those in panel (A)). (D) COG of yearly CV-A16 epidemics stratified by size of yearly CV-
A6 epidemics. (E) COG of yearly CV-A6 epidemics stratified by size of yearly EV-A71
epidemics (colors correspond to lower and upper halves of annual counts). (F) COG of
yearly CV-A6 epidemics stratified by size of yearly CV-A16 epidemics.
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Figure S5: Virologic counts of EV-A71 by year and by prefecture, 2000 to 2015. (A)
Time series of EV-A71 counts aggregated across all of Japan, by week. (B) Heat map
of EV-A71 counts, by year and by prefecture (n = 47). Prefectures are sorted in
descending order of population size in 2005, from largest (top) to smallest (bottom).
Color indicates the binned annual count (values: 0, 1 to 5, 6 to 10, 11 or greater).
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Figure S6: Virologic counts of CV-A16 by year and by prefecture, 2000 to 2015. (A)
Time series of CV-Al16 counts aggregated across all of Japan, by week. (B) Heat map
of CV-A16 counts, by year and by prefecture (n = 47). Prefectures are sorted in
descending order of population size in 2005, from largest (top) to smallest (bottom).
Color indicates the binned annual count (values: 0, 1 to 5, 6 to 10, 11 or greater).
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Figure S7: Reported syndromic HFMD cases by week and by prefecture, 2000 to
2015. (A) Time series of HFMD reports aggregated across all of Japan, by week. (B)
Heat map of HFMD reports, by week and by prefecture (n = 47). Prefectures are sorted
in descending order of population size in 2005, from largest (top) to smallest (bottom).
Each thin bar represents a week, and color indicates the notification count.
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Figure S8: Reported syndromic HFMD by week for selected prefectures, 2000 to
2015. (A) Tokyo. (B) Osaka. (C) All prefectures except Okinawa. (D) Okinawa. Note
that the y-axis range varies by panel.
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S2. Inferring serotype counts, from serotype proportions and syndromic counts

Inferring weekly HFMD counts attributable to each serotype for 1982 to 2015 involves a
two-step process: first, estimating the probability of a virologically tested HFMD case
being caused by a specific serotype by week, and second, multiplying this by the
number of syndromic HFMD counts by week. The main challenges here are that there
are multiple serotypes that cause HFMD, and that their probabilities and counts are both
likely to be temporally autocorrelated. Due to the lack of additional virologic data, we
assumed that EV-A71 and CV-A16 were the only causative serotypes from 1982 to
1999; from 2000 to 2015, we included counts of all available serotypes.

We tested many parameterizations of a temporal kernel, and ultimately compare three
representative ways of estimating the weekly probability of a virologically tested HFMD
case being caused by a specific serotype: (1) a simple moving average over a
symmetric 3-week window around the estimation week t, with equal weights; (2) a
moving average over a symmetric 11-week window around the estimation week, with
inverse powers of 2 weights (e.g., 1/32, 1/16, 1/8, 1/4, 1/2, 1, 1/2, 1/4, 1/8, 1/16, 1/32);
and (3) a moving average over a symmetric 11-week window around the estimation
week, with Gaussian kernel weights (see Table S2 and Figure S10G).

We would expect that taking direct weekly proportions, as well as method (1), would
produce estimates with the most noise: this is because weekly virologic sample sizes
can be quite low or zero due to logistical constraints, but given the endemicity of
syndromic HFMD during this entire time period, a week with no virologically confirmed
cases is unlikely to reflect the true transmission process (see below). We used each
smoothing method to first calculate weekly serotype-specific counts using the weights,
and then normalized these counts each week to produce serotype-specific probabilities.
Note that the denominator consists of EV-A71 and CV-A16 from 1982 to 1999, and all
serotypes afterwards.

We used 30 years of simulated time series data of EV-A71 and CV-A16 from the two-
serotype TSIR model with cross-protection (heavily down-sampled using a reporting
rate of 0.05%, see Section S6) to test these three ways of recovering weekly
proportions. We found that the latter two methods (‘Linear’ and ‘Gaussian’ in Figure
S10, corresponding to methods (2) and (3)) performed qualitatively better than the
simple moving average (‘Simple’, corresponding to method (1)) at estimating the true
proportions. In Figures S10A—F, each point in each scatterplot represents a week,
where the x-axis is the true proportion of that serotype and the y-axis is the estimated
proportion using method (1) in red, method (2) in green, and method (3) in blue.
Methods (2) and (3) both yield high correlations with low variance. We ultimately
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selected method (3) for this analysis because it strikes a good balance between taking
advantage of the temporal autocorrelation of the data and assigning less weight to
observations farther away in time (i.e., method (2) assigns greater weight to more distal
weeks than method (3) does, see Figure S10G). Lastly, we took syndromic HFMD
counts to be the number of syndromic HFMD cases per sentinel site multiplied by the
total number of sentinel sites.

These are simple methods to estimate serotype proportions, and there have been
recent methodological developments that leverage syndromic and under-sampled
virologic data to answer similar questions (e.g., [12]). Despite minor discrepancies
among our three methods here in recovering the true underlying probabilities, we found
that they all lead to very similar values of weekly serotype-specific incidence since this
is, in line with our expectations, largely driven by the weekly counts of syndromic
HFMD. The syndromic data shows that HFMD is endemic in Japan (where syndromic
cases are reported from pediatric sentinel sites), while the virologic data (for which
specimens are collected based on convenience sampling from about 10% of the
sentinel sites, with the number and type of samples collected being conducted on an ad
hoc basis) has zeros that may suggest otherwise.

Since we are modeling all of Japan, HFMD (and its causative serotypes) should stay
endemic in such a large population. Therefore, the probability of infection fading out will
be small, and re-introduction of infection from outside of the population (via immigration)
IS not necessary to sustain infection in the population. Incorporating serotype
proportions and syndromic counts allows us to ‘preserve’ this endemicity of the HFMD
time series by counteracting the relatively under-sampled nature of the virologic data.
This is directly related to the benefit of incorporating numerous weeks into the
smoothing.

16



Method Specification of weights (in R code*) R? value
(1) Simple w = rep(1,times=3) 0.95
(2) Linear w=1/2"c(5:1,0,1:5) 0.97
(3) Gaussian w = dnorm(seq(-5,5,length=11),mean=0,sd=1) 0.96

Table S2: Three parameterizations and resulting R? of a temporal kernel to
estimate serotype proportions. R? value calculated by fitting a simple linear
regression to observed and expected counts (see Figure S10). *Not normalized.
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Figure S10: Accuracy of an HFMD case being classified as a specific serotype
based on three parameterizations, from simulated data. (A) Observed (x-axis)
against expected (y-axis) probabilities (p) for EV-A71 using method (1) (each point

corresponds to a week). (B) EV-A71 using method (2). (C) EV-A71 using method (3).

(D) CV-A16 using method (1). (E) CV-A16 using method (2). (F) CV-A16 using method
(3). (G) Weight or relative contribution (y-axis) of each week (x-axis) to the overall
estimation for week t, for each method.
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S3. Intrinsic (within-serotype) patterns

We explored the temporal patterns independently by serotype, using a variety of
methods. We first calculated an estimate of the autocorrelation function (ACF) between
1997 and 2015 (our primary time period of interest for the mechanistic modeling) for
each raw time series C; and the first difference of the time series (D; = C;,1 — C;), tO
look at the correlations between C;,, and C;, and between D,,, and D, (Figure S11),
where t is a time-step of one week. We see that these time series are, as expected,
highly autocorrelated (i.e., the number of cases at time t strongly predicts the number of
cases at time t + 1). There is a within-year signal of autocorrelation in both of the raw
series, along with a noticeable three-year cyclical component in the raw and first
differenced EV-A71 series. This was done using the acf function in the stats package in
R, with a lag.max value of 5 years.

To assess between-year temporal patterns, we then used wavelet analysis, which is a
standard method in the ecological literature for exploring how the period component of a
non-stationary time series varies over time [13,14]. We computed the continuous
wavelet transform for the Morlet wavelet using data from 1982 to 2015, and plot the
wavelet power spectra of the complete time series of EV-A71 in Figure S12 and CV-A16
in Figure S13 as a function of period (y-axis) and time (x-axis), looking at various
transformations of the data (square root, log + 1, log + 0.5, and raw). We see that for all
transformations, EV-A71 has a three-year cyclical component with a strong signal
beginning in 1997, which is the start of the inferential analysis. On the other hand, CV-
A16 is predominantly annual during this time period. This was done using the cwt
function in the Rwave package in R, with noctave = 8 and nvoice = 16.

Lastly, we compiled a suite of metrics related to epidemic timing, size, and shape for
assessing within-year temporal patterns, for each serotype for each year between 1982
and 2015, outlined in Table S3. We also compared these within-year serotypes patterns
of each serotype (EV-A71 and CV-A16) to the within-year patterns of HFMD counts,
and looked at serotype-specific epidemic metrics with a one-year lag as well.

The naming convention we adopt for the variables here is: [metric] [serotype (EV or CV)
or HFMDJ; [year, if including temporality], so cog EV refers to the center of gravity of the
EV-AT71 serotype epidemic for all years between 1982 and 2015, cog EV; t, refers to
the center of gravity of the EV-A71 serotype epidemic at yearst =1to T-1 (i.e.,
computed for the years 1982 to 2014), and skew HFMD; t, refers to the skewness of
the HFMD epidemic at yearst =2 to T (i.e., computed for the years 1983 to 2015).
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The mean center of gravity was calculated as the first moment of the probability density
of the epidemic curve (a single year’s epidemic curve represented as a histogram with
week on the x-axis and density on the y-axis, see Figure S14 and Figure S15). The
center of gravity represents the mean week of infection, weighted by the weekly number
of cases. The skewness was calculated as the third moment of the probability density of
the epidemic curve (using the moments function in the moments package in R).

Negative skewness means that the epidemic curve is skewed to the left (i.e., has a long
left tail such that the mean week is before the median week); positive skewness means
that the epidemic curve is skewed to the right (i.e., has a long right tail such that the
mean week is after the median week). 95% confidence intervals (Cls) on the center of
gravity and skewness were obtained using the normal approximation to parametric
bootstrap distributions with 10,000 iterations, using the boot.ci function in the boot
package in R, with type = "norm". The onset week, defined as the change point in the
slope of the epidemic curve, was calculated by the Mann-Whitney-Pettitt change-point
detection test as in [15], using the pettitt.test function in the trend package in R.

These epidemic metrics are summarized in four scatterplot matrices, where each point
on each scatterplot represents a year. Due to the large number of variables, we
partitioned them into those related to serotype-specific comparisons against syndromic
HFMD metrics without the temporal lag (Figure S16 and Figure S18), and serotype-
specific comparisons with only the temporal lag (Figure S17 and Figure S19). The
Spearman correlation coefficients are on the upper diagonal, and scatterplots where the
absolute value of the correlation coefficient is greater than or equal to 0.5 are marked in
red.

We observed some of the strongest correlations between metrics of the same type (i.e.,
epidemic timing or epidemic size) within EV-A71, CV-A16, and HFMD — and when
including a temporal lag — as well as the same-type metrics between a serotype and
HFMD (i.e., a high year of CV-A16 is associated with a high year of HFMD). We also
observed strong positive correlations between the total number of CV-A16 counts and
CV-A16 skewness, and between the maximum number of weekly CV-A16 counts and
CV-A16 skewness.
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Figure S11: Autocorrelation functions (ACF) for EV-A71 and CV-A16, 1997 to
2015. (A) ACF (correlation on y-axis) for weekly raw EV-A71 series by time (x-axis in
years) with a maximum lag of 5 years. (B) ACF for weekly first-differenced EV-A71
series. (C) ACF for weekly raw CV-A16 series. (D) ACF for weekly first-differenced CV-
Al6 series.
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Figure S12: Wavelet analysis of various transformations of EV-A71, 1982 to 2015.

1982

(A) Raw counts of EV-A71. (B) Wavelet power spectrum of square root-transformed

axis is time (year), y-axis is the period (in years), color is the power

-ATL (x-

EV
spectrum,

red gradient)). (C) Wavelet power spectrum of log-

strong to weak (yellow
transformed EV-A71 plus 1. (D) Wavelet power spectrum of log-transformed EV-A71

plus 0.5. (E) Wavelet power spectrum of raw EV-A71.
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Figure S13: Wavelet analysis of various transformations of CV-A16, 1982 to 2015.
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Epidemic timing Epidemic size Epidemic shape Temporality
(in weeks)
Center of gravity Total number of Skewness Epidemic timing,
(cog) counts in year (sum) (skew) size, shape metrics
with lag of 1 year
(to Or ty)
Peak week Maximum number of
(peak) weekly counts in
year (max)
Onset week Raw proportion of
(onset) EV-A71 and CV-Al6

counts that year that
were that serotype

(prop)

Table S3: Metrics for the timing, size, and shape of an annual epidemic curve.
Each of these metrics is applicable for either serotype-specific counts or all-cause
HFMD, and can be extended for temporal comparisons at years t = 1 to T-1 against

years t = 2 to T. Variable name in italics.
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Figure S14: Normalized year-by-year weekly EV-A71 epidemic curve, with 95%
confidence intervals for the center of gravity (blue line), 1982 to 2015. Year label is

above. Note that the y-axis range varies by panel.
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Figure S15: Normalized year-by-year weekly CV-A16 epidemic curve, with 95%
confidence intervals for the center of gravity (blue line), 1982 to 2015. Year label is
above. Note that the y-axis range varies by panel.
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Figure S16: Scatterplot matrix of within-year metrics of EV-A71 (*EV”) and HFMD,
without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point
corresponds to a year), peak week, onset week, total number of counts (“sum”),
maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts
that year that were EV-A71 (“prop”), and skewness. Spearman correlations marked on
upper diagonal, with coefficients over 0.5 in red.
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Figure S17: Scatterplot matrix of EV-A71 (“EV”)-specific comparisons with a one-
year temporal lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point
corresponds to a year), peak week, onset week, total number of counts (“sum”),

maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts

that year that were EV-A71 (“prop”), and skewness. Here, t, refers to values computed

for the years 1982 to 2014, and t, refers to values computed for the years 1983 to 2015.

Spearman correlations marked on upper diagonal, with coefficients over 0.5 in red.
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Figure S18: Scatterplot matrix of within-year metrics of CV-A16 (“CV”) and HFMD,
without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point

corresponds to a year), peak week, onset week, total number of counts (“sum”),
maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts
that year that were CV-A16 (“prop”), and skewness. Spearman correlations marked on
upper diagonal, with coefficients over 0.5 in red.
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Figure S19: Scatterplot matrix of CV-A16 (“*CV”)-specific comparisons with a one-
year temporal lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point
corresponds to a year), peak week, onset week, total number of counts (“sum”),

maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts

that year that were CV-A16 (“prop”), and skewness. Here, t, refers to values computed

for the years 1982 to 2014, and t, refers to values computed for the years 1983 to 2015.

Spearman correlations marked on upper diagonal, with coefficients over 0.5 in red.
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S4. Extrinsic (between-serotype) patterns

We also explored the temporal patterns between the EV-A71 and CV-A16 serotypes
(‘biotic interactions’), using a variety of methods. We first calculated an estimate of the
cross-correlation function (CCF) between 1997 and 2015 (i.e., our primary time period
of interest for the mechanistic modeling) between the raw time series of C;; and C; ; for
serotypes i and j, and the first difference of the time series (D;; = C¢4q; — C¢; and D, ; =
Cev1,j — Ctj), to look at the correlations between C,; and C; ;, and between D, ; and D, ;
(Figure S20A), where t is a time-step of one week.

We see that for the raw time series, the most dominant cross-correlations within a one-
year temporal lag range are negative, which indicates that a high value of one serotype
is likely to lead to a low value of the other serotype over the next year. However, these
time series data are highly autocorrelated (Figure S20B), and the CCF of the first-
differenced data are relatively uncorrelated across a two-year temporal lag range,
implying that these interactions are not very strong after accounting for within-serotype
autocorrelation. This was done using the ccf function in the stats package in R, with a
lag.max value of 2 years.

To assess between-year temporal patterns, this time between the two serotypes of EV-
A71 and CV-Al6, we again used wavelet analysis. We computed the cross-wavelet
transform for the Morlet wavelet using data from 1982 to 2015, and plot the cross-
wavelet power spectra of the time series of EV-A71 and CV-A16 taken together in
Figure S21, as a function of period (y-axis) and time (x-axis), looking at various
transformations of the data (square root, log + 1, log + 0.5, and raw). The cross-wavelet
is used to highlight regions in time-frequency space where the time series show high
common power [16].

We then superimposed the phase arrows from the cross-wavelet of the square root-
transformed time series of EV-A71 and CV-A16 in Figure S22 to more closely look at
relative phasing. We observe that after 1997, the start of the inferential analysis, the two
series are largely anti-phase (i.e., arrows generally point left). Prior to 1997, the relative
phasing is less clear (i.e., arrows point in various directions). This was done using the
xwt function in the biwavelet package in R.

We used the same metrics from Table S3 on epidemic timing, size, and shape to
assess within-year temporal patterns between serotypes for each year, with a one-year
lag. We also adopted the same naming convention as in Section S3. These epidemic
metrics are summarized in two scatterplot matrices, where each point on each
scatterplot represents a year. Figure S23 shows correlations without the temporality,
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and temporality is included in a comprehensive Figure S24. Again, the Spearman
correlation coefficients are shown on the upper diagonal, and scatterplots where the
absolute value of the correlation coefficient is greater than or equal to 0.5 are marked in
red.

While the strongest correlations are found within serotypes, the highest between-
serotype correlations are those in accordance with expectation (e.g., the proportion of
one serotype vs. the total number of the other). Though the correlations are not very
strong, we observe a negative relationship between two quantities of interest, sum EV
and sum CV (i.e., yearly CV-A16 notifications is negatively associated with yearly EV-
A71 notifications), as well as a positive relationship between skew EV and sum CV (i.e.,
large CV-A16 years are associated with a EV-A71 epidemic curve that is skewed to the
right). Additionally, we observe a negative association between the center of gravity of
EV-A71 in year t, and the proportion of HFMD cases attributable to CV-A16 in year t,.
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Figure S20: Cross-correlation functions (CCF) for EV-A71 and CV-A16, 1997 to

2

2015. (A) CCF (cross-correlation on y-axis) for weekly raw EV-A71 and CV-A16 series

by time (x-axis in years) with a maximum lag of 2 years. (B) CCF for weekly first-
differenced EV-A71 and CV-A16 series.
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Figure S21: Cross-wavelet analysis of various transformations of EV-A71 and CV-
A16, 1982 to 2015. (A) Raw virologic counts of EV-A71 (green) and CV-A16 (red). (B)
Cross-wavelet power spectrum of square root-transformed series (x-axis is time (year),
y-axis is the period (in years), color is the power spectrum). (C) Cross-wavelet power
spectrum of log-transformed series plus 1. (D) Cross-wavelet power spectrum of log-
transformed series plus 0.5. (E) Cross-wavelet power spectrum of raw series.
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Figure S22: Cross-wavelet analysis of EV-A71 and CV-A16 with phase arrows,
1982 to 2015. Cross-wavelet power spectrum of square root-transformed series (x-axis
is time (year), y-axis is the period (in years), color is the power spectrum), with cone of
influence in white (where edge effects become important), and phase arrows in black.
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Figure S23: Scatterplot matrix of within-year metrics of EV-A71 (“EV) and CV-Al6
(“CV"), without temporality, 1982 to 2015. Center of gravity, in weeks (“cog”) (each
point corresponds to a year), peak week, onset week, total number of counts (*sum”),
maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts

that year that were that serotype (“prop”), and skewness. Spearman correlations
marked on upper diagonal, with coefficients over 0.5 in red.
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Figure S24: Scatterplot matrix of metrics of EV-A71 (“*EV”) and CV-A16 (“CV”)
with a one-year lag, 1982 to 2015. Center of gravity, in weeks (“cog”) (each point
corresponds to a year), peak week, onset week, total number of counts (“sum”),
maximum number of weekly counts (“max”), proportion of EV-A71 and CV-A16 counts
that year that were that serotype (“prop”), and skewness. Here, t, refers to values
computed for the years 1982 to 2014, and t, refers to values computed for the years
1983 to 2015. Spearman correlations marked on upper diagonal, with coefficients over
0.5inred.
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S5. The TSIR model

Data-related challenges for modeling

The data stream of syndromic and virologic HFMD surveillance is challenging from a
modeling standpoint (Figure S25). The subscripts x € [1,2] refer to the two serotypes of
interest, and the p,, q,, and r, marked in red represent the three sources of under-
reporting in the observation process. For parsimony, we assume that r; and r,, the
serotype-specific probability of an HFMD case being virologically tested, are equal. We
also assume that g, and g, the serotype-specific probability of the doctor or clinic that
an HFMD patient visits being in the sentinel network, are also equal.

As stated in the main text, 10% of the syndromic sentinel sites also serve as sentinels
for laboratory surveillance, from which specimens are tested for the infectious agent
based on convenience sampling [17]. We do not assume that p; and p,, the serotype-
specific probability of a true HFMD case attending a doctor or clinic, are equal.

Therefore, the serotype-specific under-reporting rate inferred from the data becomes
p19: and p,q,, respectively (in both the one-serotype and two-serotype models). The
method presented in Section S2 allows us to classify the weekly reported syndromic
HFMD cases by causative serotype (thus accounting for r; and r,), so these
reconstructed serotype-specific weekly HFMD counts serve as the input data for the
mechanistic modeling, and the remaining source of under-reporting that need to be
accounted for in the modeling is the product of p, and g,.. Any inaccuracies in the 10%
value from above will be compensated for in this model-fitted value of under-reporting.

Model equations

The time series susceptible-infected-recovered (TSIR) model is a discrete-time version
of the continuous-time SIR model, in which individuals are born and enter the
susceptible class of individuals, become infected and infectious with a disease (here, an
HFMD serotype), and recover and are removed thereafter [18—21]. The TSIR model can
be characterized by a set of difference equations. We followed the same inferential
procedure as described in [22] and provide a brief outline here. The susceptible
compartment of the TSIR model is defined by:

St+1 =S8t + Bt — Ity (1)

At each time-step t, S; is the number of susceptible individuals, B; is the number of
births (from demographic data), and I, is the true (unobserved) number of infected
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individuals. For simplicity, we assumed that there is no maternal immunity period for
HFMD, such that all individuals who are born immediately enter the susceptible
compartment (though adding a compartment for maternally immune individuals would
not change the qualitative dynamics). A central assumption is that every individual gets
infected over the course of their life (see below); additionally, deaths are not explicitly
modeled because it is assumed that infection precedes death for childhood diseases
such as HFMD, in developed settings such as Japan. Taking this assumption that all
individuals eventually become infected, we can reconstruct the time series of
susceptible individuals by re-arranging the previous equation and fitting the following
cumulative-cumulative linear regression:

t t Cm
D Bu=) Ttz )

Here, C; refers to the inferred serotype counts, p is the reporting rate of infection (as a
probability), and Z; is the deviations around the mean number of susceptible individuals
(S) at time t. The p is the fitted slope of this regression, and the residuals of this model
are Z,. We first reconstruct I, = C; - 1 / p, to obtain the complete time series of infected
individuals. HFMD transmission is characterized by the following frequency-dependent
dynamics:

Ipq = Bs - Ita1 ) Staz / N¢ (3)

The g, is a seasonally-varying transmission rate that varies for each week s of the year,
between 1 and 53, @, and a, are correction parameters accounting for non-seasonal
heterogeneities in mixing [18,19] as well as for time discretization [23], and N; is the
total population size. We linearized equation (3) with the following regression model, as
per [21]:

log(lt41) = log(ﬂs*) +{ - Z¢ + ay - log(ly) (4)

Here, 5" = 5 - S%, and { = a, / S. Since S is unknown, a, and 3, are not identifiable
unless a, is fixed. We choose to fix the value of a, at 1 as per [18,23], allowing us to
estimate S and ;. Now, we are able to reconstruct S, = S + Z, to obtain the complete
time series of susceptible individuals. Predictions (‘forward simulations’) for S,,, and
I:,, were generated using equations (1) and (3) (also see Section S7), with initial
conditions and demography, as well as the a; (variable), a, (consistently fixed at 1), and
Bs (estimated) parameter values. For stochastic simulations, I;,,; would be drawn as a
random variable with a mean equal to the right side of equation (3).
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In more detail: demographic stochasticity introduces variability around the mean
epidemic trajectory. In the TSIR model framework, demographic stochasticity is
modeled as: if we have I, infected individuals at time t, the number of infected
individuals at time t + 1 will come from a negative binomial (or Poisson) distribution,
with a mean equal to the right side of equation (3) and a variance. The predictions that
we show at each time-step (e.g., in Figure 3B) are this mean value. The coefficient of
variation of the negative binomial process decreases with more infections [19]. Since we
have a relatively large number of infections at any time, for simplicity we show the
deterministic (mean) predictions; adding the stochastic simulations in would lead to a
'‘band’ around the mean predictions.

Fitting and sensitivity analyses

We fit the one-serotype model to the inferred serotype data for EV-A71 and CV-A16
separately. We show results from taking 1997 as well as 2000 as the start year, with no
gualitative differences in results between the two (Figure S26 and Table S4, compared
to Figure 3 and Table 1 in the main text). In the main analysis, we used a time-invariant
under-reporting rate for the entire time series. A time-varying under-reporting rate could
be implemented (e.qg., by fitting a smoothing spline with varying degrees of freedom),
but for simplicity in interpretation we opted for the former.

In the main analysis, we also fixed a; at a canonical value of 0.975. In previous work we
performed extensive sensitivity analysis of the TSIR model to a range of a; values [22],
so here we chose some representative a, values to conduct some sensitivity analysis of
the one-serotype TSIR model for the 1997 data (see Table S5 for parameters, and
Figures S27-S30 for model predictions). We note that inferred a; values are lower than
mechanistically necessary a, values to explain the multi-annual cycles of EV-A71.
Lastly, while a; could vary between the two serotypes, we used a consistent value
throughout the manuscript for comparability.

Additionally, we performed a simulation exercise examining the sensitivity of the TSIR
model estimates to the assumption of all individuals becoming infected (Figures S31—
S33). For this, we used a well-studied dataset of reported bi-weekly measles in London
from 1944 to 1964 [19]. We find that if only a fraction of all individuals become infected,
this will result in the under-estimation of the true reporting rate with relatively minor
downstream effects on the proportion susceptible and the mean transmission rate, but
will not qualitatively affect the dynamics of the model. The one-serotype TSIR model
can be implemented using the tsiR R package [24].
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Figure S25: Flow diagram of the data stream for syndromic and virologic
surveillance in Japan, from left (true HFMD cases per a week: unobserved) to
right (syndromic HFMD reports and serotyped cases per week: grey boxes,
observed). The p, q, and r highlighted in red are probabilities, with subscripts 1 and 2
referring to the two serotypes, EV-A71 and CV-A1l6.
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Figure S26: Deterministic one-serotype TSIR output for EV-A71 and CV-A16, 2000
to 2015 (analogue to Figures 3A-D in main text). (A) S, values for EV-A71 (x-axis is
week of year). (B) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (C) S, values for CV-
A16. (D) Observed time series (black) against predicted model fit (red) for CV-A16.

Parameter values in Table S4.
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Serotype p 5 B CV of B, aq
EV-AT71 0.0354 0.0940 13.7969 0.4061 0.975
CV-Al6 0.0518 0.0989 13.0420 0.2612 0.975

Table S4: Epidemiological parameters from the one-serotype model, 2000 to 2015.
Reporting rate, mean proportion susceptible, mean transmission rate, and coefficient of

variation in transmission rate, by serotype. CV: coefficient of variation.
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Scenario| a, a; p P 5 5 B B

EV-A71 | CV-A16 | EV-A71 | CV-A16 | EV-A71 | CV-Al6 EV-A71 CV-Al6

Main | Optimal/| Optimal/| 0.0349 | 0.0525 | 0.0935 | 0.1056 13.9054 12.2532
tuned: | tuned:
0.975 0.975

S1 Inferred: | Inferred: | 0.0349 | 0.0525 | 0.0914 | 0.1355 26.8334 18.4408
0.899 0.901

S2 Fixed: | Fixed: | 0.0349 | 0.0525 | 0.0934 | 0.1072 14.5137 12.6167
0.970 0.970

S3 Fixed: | Fixed: | 0.0349 | 0.0525 | 0.0937 | 0.1040 13.3230 11.8980
0.980 0.980

S4 Fixed: | Fixed: | 0.0349 | 0.0525 | 0.0939 | 0.1010 12.2317 11.2125
0.990 0.990

Table S5: Parameter specifications and estimates for the one-serotype TSIR
model in the main analysis (top row) and in the sensitivity analyses, 1997 to 2015.
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Figure S27: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S1
from Table S5. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S28: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S2
from Table S5. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S29: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S3
from Table S5. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S30: Deterministic one-serotype TSIR output, 1997 to 2015, Scenario S4
from Table S5. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S31: Testing a TSIR model assumption. Scenario 1: Assume 100% of
births get infected (expected for measles). (A) Cumulative cases (red) and
cumulative births (blue) in London over time (x-axis), and fitted regression line (green).
(B) Estimated reporting rate (y-axis) over time (x-axis), held constant over the entire
time period. (C) Reconstructed Z; (red) and S; (turquoise) over time (x-axis). (D) Log-
likelihood (y-axis) profiled over S values, with the maximum likelihood value of §
indicated by the dashed line. (E) Inferred S values and confidence interval (y-axis) for
each of the 26 bi-weeks of the year (x-axis); a value fixed at 0.97. (F) Observed data
(blue) against predicted model fit (red). (G) Inverse of observed data (blue) against
predicted model fit (red). Analysis done using the tsiR R package.
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Figure S32: Testing a TSIR model assumption. Scenario 2: Assume only 80% of
births get infected; in the model, inflate number of cases to correct for cases
representing only a subset of all births. (A) Cumulative cases (red) and cumulative
births (blue) in London over time (x-axis), and fitted regression line (green). (B)
Estimated reporting rate (y-axis) over time (x-axis), held constant over the entire time
period. (C) Reconstructed Z; (red) and S, (turquoise) over time (x-axis). (D) Log-
likelihood (y-axis) profiled over S values, with the maximum likelihood value of §
indicated by the dashed line. (E) Inferred S values and confidence interval (y-axis) for
each of the 26 bi-weeks of the year (x-axis); a value fixed at 0.97. (F) Observed data
(blue) against predicted model fit (red). (G) Inverse of observed data (blue) against
predicted model fit (red). Analysis done using the tsiR R package.
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Figure S33: Testing a TSIR model assumption. Scenario 3: Assume only 80% of
births get infected; in the model, deflate number of births to correct for not all
births getting infected. (A) Cumulative cases (red) and cumulative births (blue) in
London over time (x-axis), and fitted regression line (green). (B) Estimated reporting

rate (y-axis) over time (x-axis), held constant over the entire time period. (C)
Reconstructed Z; (red) and S; (turquoise) over time (x-axis). (D) Log-likelihood (y-axis)
profiled over S values, with the maximum likelihood value of S indicated by the dashed
line. (E) Inferred S, values and confidence interval (y-axis) for each of the 26 bi-weeks
of the year (x-axis); a value fixed at 0.97. (F) Observed data (blue) against predicted
model fit (red). (G) Inverse of observed data (blue) against predicted model fit (red).
Analysis done using the tsiR R package.
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S6. The two-serotype TSIR model

Model equations

The two-serotype time series susceptible-infected-recovered (TSIR) model is a discrete-
time version of the continuous-time SIR model, and allows for a transient heterotypic
(different serotype) cross-immunity against all other serotypes after infection, and no
homotypic (same serotype) re-infection (see Figure 2 in main text for compartmental
model structure). The multi-serotype TSIR model was originally developed by Reich et
al [25], and we applied a version of the model in our previous analysis of the causative
serotypes of HFMD in China [22]. The multi-serotype TSIR model can be characterized
by a set of difference equations, and we focus here on the case of two serotypes. The
susceptible compartment for serotype i of the two-serotype TSIR model is defined by:

St+1,i = St,i + B — It+1,i - CPt,i (1)

At each time-step t, S;; is the number of susceptible individuals to serotype i, B, is the
number of births (from demographic data), and I, ; is the true (unobserved) number of
infected individuals. For simplicity we assumed that there is no maternal immunity
period for HFMD, such that all individuals who are born immediately enter the
susceptible compartment. CP; ; represents the effect of a transient cross-protection

against infection with serotype i after infection with serotype j # i, and is defined by:
CPt,l: = It,j - It—kj,j (2)

In this parametrization, k; is the fixed duration (in weeks) of cross-protection against

serotype i, following infection with serotype j. This model is a slight variation of that
used in [22]; here, we allow for a potential asymmetry in the duration of cross-protection
and fix the strength of cross-protection at 100% for parsimony. Assuming that all
individuals eventually become infected with both serotypes over the course of their life,
we can reconstruct the time series of susceptible individuals by re-arranging the
previous equation and fitting the following cumulative-cumulative linear regressions:

t t t
le
By, = — CPhi+Zti — 2o 3)
m=1 m=1 i m=1

Here, C,; refers to the inferred serotype counts, p; is the serotype-specific reporting rate
of infection (as a probability), and Z, ; is the deviations around the mean number of
susceptible individuals (S,) to serotype i at time t. The p; values were estimated as the
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slope of this regression (using the p; parameters as iteratively estimated offset terms,
since the I,; = C;; - 1 / p; and CP,; terms both depend on p;), and the residuals of the
models are Z, ;. We first reconstruct I, ; to obtain the complete time series of infected

individuals. Serotype-specific transmission is characterized by the following frequency-
dependent dynamics:

It+1,i = ﬁs,i : It,i(x1 'St,ia2 / N¢ (4)

The By ; is a seasonally-varying transmission rate that varies for each week s of the
year, between 1 and 53. In the main analysis, we allow this transmission rate to have a
serotype-specific shape and scale. As in the single-serotype scenario, we similarly
linearized equation (4) with the following regression model:

log(Ir41,:) =1og(Bsi") + Gi - Zei + ay - log(Iy;) (5)

Analogously, ;" = Bs; - 5,“*, and {; = a, / ,. Following similar steps as in the single-
serotype scenario, we are able to reconstruct S;; = S, + Z,; to obtain the complete time
series of susceptible individuals by serotype. Predictions (‘forward simulations’) for Sy, 1 ;
and I,,1; were again generated using equations (1) and (4) (also see Section S7), with
initial conditions and demography, as well as the «a, (variable), a, (consistently fixed at
1), and f,; (estimated) parameter values.

Parameterizing cross-protection

In addition to the parameter estimation procedure described above, it is also necessary
to estimate k, or the pair of k values characterizing cross-protection between the two
serotypes. We devised a two-step process to estimate k, described below. Notationally,
kgy_a71 refers to the duration of cross-protection (in weeks) following infection with EV-
A71, and k.y_41¢ refers to the duration of cross-protection (in weeks) following infection
with CV-A16. Parameters inferred simply from a regression framework are not
necessarily optimal from a dynamical standpoint since their values for predictive
purposes often depend on the periodicity of the time series of interest [23], so we need
to obtain optimal cross-protection parameter estimates both in terms of statistical
likelihood and in terms of predicted correlation in epidemic trajectory. In the first step,
we leverage profile likelihoods to narrow down the plausible parameter space, and in
the second step, we hone in on optimal values of cross-protection from a dynamical
standpoint. We performed this procedure to estimate k on the longer of the time series
(1997 to 2015), but there were no qualitative differences when taking 2000 as the start
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year (not shown). The sensitivity analyses are conditional on these k values (see
below).

First, we constructed a profile likelihood surface over kgy_471 and k¢y_416 ranging from O
to 2 years, by week (i.e., 0 to 104 weeks). We fixed a; at 0.975 and fit all of the other
parameters as described above, and extracted the log-likelihood from the two-serotype
TSIR model. As shown in Figure S34, we calculated the log-likelihood at 105 by 105 =
11,025 pairs of k. Ultimately 5,251 k pairs were within the 95% bivariate confidence
region (grid cells outlined in black), of which 3,250 pairs had successful convergence in
susceptible reconstruction and were carried forward to the next step of the procedure.

Second, for each of the 3,250 pairs of k that remained, we took the fitted parameter
values and forward simulated incidence using the two-serotype TSIR model over the
duration of the time series. For each focal serotype, we calculated the R? values
comparing observed against expected counts: we aggregated these counts over 4-week
bins, and fit a simple linear regression with no intercept term. In Figure S35A, we show
the mean of the R? values for EV-A71 and CV-A16. The globally optimal k is where the
averaged R? is the highest (black circle), and this peak leads to forward predictions for
EV-AT71 that are consistently robust throughout the course of the time series (Figure
S35B). We also explored the ridge of high R? values below the y = x line (purple circle)
and find that while this local maximum has a high R? averaged over the entire time
series, it performs qualitatively less well in predicting the latter half of the time series
(Figure S35C).

Fitting, sensitivity analysis, and future considerations

We fit the two-serotype model to the inferred serotype data for EV-A71 and CV-A16
together. The best-fit values of k from our two-step estimation process supported the
existence of an asymmetry: based on the time series from 1997 to 2015, we estimated
k = 8 weeks of complete cross-immunity against CV-A16 after infection with EV-A71,
and k = 39 weeks of complete cross-immunity against EV-A71 after infection with CV-
A16 (global optimum). We compared this to a local optimum below the y = x line (k =
17 weeks of complete cross-immunity against CV-A16 after infection with EV-A71, and
k = 11 weeks of complete cross-immunity against EV-A71 after infection with CV-A16),
for which the predictive power was considerably lower (Figure S35).

We show model results from taking 1997 as well as 2000 as the start year, with no
gualitative differences in results between the two (Figure S36 and Table S6, compared
to Figure 5 and Table 1 in the main text). An important distinction, however, is that we
only fit the cross-protection parameters for the main time period (1997 to 2015) and
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applied them to the 2000 to 2015 time period. In practice, we first estimated k as
described above, and fit all other parameters conditional on those values of k and a; =
0.975 (i.e., reporting rate, proportion susceptible, and seasonal transmission rate, by
serotype). To highlight the differences between performing susceptible reconstruction in
the one-serotype and two-serotype analyses, we show how reconstructed s, ; = S;; / N;
varies between the models (Figure S37). In Figure S37A, we see that s; of EV-A71 from
the two-serotype model (dark green line) dips according to CV-A16 incidence (red): for
instance, 2011 was a large year of CV-A16 which removed EV-A71 susceptibles into
the cross-protection class, whereas s; of EV-A71 from the one-serotype model (light
green line) continues to increase (this is under the ‘null scenario’ of no cross-protection).

As in the one-serotype models, we here fixed a; at a canonical value of 0.975, using the
same value for each serotype for comparability, and used a time-invariant under-
reporting rate for the entire time series. We again performed some sensitivity analysis of
the two-serotype TSIR model to a, for the 1997 to 2015 data (see Table S7 for
parameters, and Figures S38—-S41 for model predictions). We used the same values of
cross-protection from before to maintain comparability (likely to be plausible since
cross-protection is a biological parameter), though its exact values could vary by
performing the estimation procedure with different values of a; (and also with different
time periods for estimation). We re-emphasize that the epidemiological parameters are
conditional on these fixed values of k, as well as on a; and the time period of interest.

Again, we note that inferred a; values are lower than the mechanistically necessary a;
values to explain the multi-annual cycles of EV-A71. The only simulation here in which
a, values vary by serotype is scenario S1 (Table S7), in which they are estimated
independently and then applied in the two-serotype forward simulations. More work will
be needed to better understand the complexities of tuning a parameters in multi-
serotype TSIR systems; however, as a; approaches the value of 1, we know that the
model behavior becomes erratic because the underlying Reed-Frost epidemic model is
neutrally stable and the TSIR approximation breaks down [22,23].

We also explored the scenario in which the S, of the two serotypes are constrained to
have the same shape, but allowed to vary in magnitude (Figure S42). Crudely, the
forward simulations from this sensitivity analysis (which use cross-protection values of k
fixed at those inferred from the main model with serotype-specific § shapes) do not fit
the data as well as when we allow the S, shapes to vary by serotype. Since seasonality
in contact rates is a periodic driver, an important future direction of work will be to better
understand if and how it interacts with cross-immunity: seasonality as modeled here
could perhaps be a proxy for more complicated fluctuations in mixing patterns over time.
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Lastly, future work should focus on gaining a better understanding of model sensitivity
to (and uncertainty in) cross-protection parameters. Our preliminary work suggests that
if there was no cross-protection, the analysis would reduce to the one-serotype models,
which do not fit the data as well as the two-serotype models do. Furthermore, the multi-
serotype TSIR model has previously been demonstrated to accurately be able to detect
the presence or absence of (symmetric) cross-protection in simulations [25].
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Figure S34: Profile likelihood surface over pairs of cross-protection parameters k,
on data from 1997 to 2015. Duration of cross-protection against CV-A16 following
infection with EV-A71 (x-axis in weeks), duration of cross-protection against EV-A71

following infection with CV-A16 (y-axis in weeks), and profile log-likelihood of the two-
serotype TSIR model with a; = 0.975. Grid cells outlined in black represent k values
that are within the 95% bivariate confidence region, derived from the y? distribution with

2 degrees of freedom. Grid cells shaded in red represent k values within the confidence

region that experienced problems with convergence in susceptible reconstruction
(inferred s for CV-A16 was not within [0,1]).
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Figure S35: Mean R? and internal predictability from forward simulations of the
two-serotype TSIR model, 1997 to 2015. (A) R? value averaged between EV-A71 and
CV-A16 and aggregated over 4-week bins, at cross-protection values of each of the
3,250 pairs of k that are outlined in black and not shaded in red, in Figure S29. The
global optimum is the black circle, and a local optimum below the y = x line (dashed
black line) is the purple circle. (B) Observed data (grey) against predicted model fit
(green) for EV-A71 (x-axis is time (year), y-axis is weekly number of cases) at the global
optimum k: R? = 0.85 for the entire EV-A71 time series, and R? = 0.81 for the EV-A71
time series from 2007 to 2015. (C) Observed data (grey) against predicted model fit
(green) for EV-A71 at the local optimum k: R? = 0.59 for the entire EV-A71 time series,
and R? = 0.24 for the EV-A71 time series from 2007 to 2015.
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Figure S36: Deterministic two-serotype TSIR output for EV-A71 and CV-A16, 2000
to 2015 (analogue to Figures 5A-D in main text). (A) S, values for EV-A71 (x-axis is
week of year). (B) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (C) S, values for CV-
A16. (D) Observed time series (black) against predicted model fit (red) for CV-A16.

Parameter values in Table S6.
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Serotype p s B CV of B¢ a; Optimal k*
EV-A71 0.0351 0.0968 13.2798 0.4031 0.975 8
CV-Al6 0.0514 0.0880 14.6609 0.2577 0.975 39

Table S6: Epidemiological parameters from the two-serotype model, 2000 to 2015.
Reporting rate, mean proportion susceptible, mean transmission rate, and coefficient of
variation in transmission rate, by serotype. CV: coefficient of variation. *Values of cross-

protection are fixed at those inferred from the main model (1997 to 2015).
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Figure S37: Inferred susceptibles from the one-serotype and two-serotype

Time series of CV-A16

Time series of EV-A71

models, 1997 to 2015. (A) S; / N, for EV-A71 from the one-serotype (light green) and

two-serotype (dark green) TSIR models (left y-axis), along with observed time series of
CV-A16 (red, right y-axis). (B) S; / N, for CV-A16 from the one-serotype (light red) and
two-serotype (dark red) TSIR models (left y-axis), along with observed time series of

EV-A71 (green, right y-axis).
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Scenario| a, a; p P 5 5 B B

EV-A71 | CV-Al16 | EV-A71 | CV-Al16 | EV-A71 | CV-Al6 EV-A71 CV-A16

Main | Optimal/| Optimal/| 0.0349 | 0.0524 | 0.0838 | 0.1001 15.3655 12.9143
tuned: | tuned:
0.975 0.975

S1 Inferred: | Inferred: | 0.0349 | 0.0524 | 0.0393 | 0.0857 71.8937 29.8462
0.879 0.899

S2 Fixed: | Fixed: | 0.0349 | 0.0524 | 0.0791 | 0.0990 16.9405 13.6485
0.970 0.970

S3 Fixed: | Fixed: | 0.0349 | 0.0524 | 0.0890 | 0.1013 13.8894 12.2186
0.980 0.980

S4 Fixed: | Fixed: | 0.0349 | 0.0524 | 0.1017 | 0.1036 11.2125 10.9351
0.990 0.990

S5 Optimal/ | Optimal/| 0.0349 | 0.0524 | 0.0778 | 0.1282 15.9350 10.0255

tuned: | tuned: (constrained | (constrained

0.975 0.975 to share to share

shape with | shape with

CV-A16) EV-AT71)

Table S7: Parameter specifications and estimates for the two-serotype TSIR
model in the main analysis (top row) and in the sensitivity analyses, 1997 to 2015.
All models are fixed with k = 8 weeks of complete cross-immunity against CV-A16 after

infection with EV-A71, and k = 39 weeks of complete cross-immunity against EV-A71
after infection with CV-A16.
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Figure S38: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S1
from Table S7. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S39: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S2
from Table S7. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S40: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S3
from Table S7. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S41: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S4
from Table S7. (A) Observed time series (black) against predicted model fit (green) for
EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B) Observed time
series (black) against predicted model fit (red) for CV-A16.
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Figure S42: Deterministic two-serotype TSIR output, 1997 to 2015, Scenario S5
from Table S7. (A) B, values for EV-A71, where values for the two serotypes are
constrained to have the same shape (x-axis is week of year). (B) Observed time series
(black) against predicted model fit (green) for EV-A71 (x-axis is time (year), y-axis is
weekly number of cases). (C) B, values for CV-A16, where the two serotypes are
constrained to have the same shape. (D) Observed time series (black) against predicted
model fit (red) for CV-A1l6.
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S7. Comparison of one-serotype and two-serotype model fit

Internal predictability

We assessed the goodness of one-serotype and two-serotype model fit using a suite of
techniques: first, we assessed internal predictability, namely how well the model
predictions match the data. To do this, we compared the observed data against the
model-predicted time series. Rather than a simple one-step-ahead prediction, this is a
more rigorous test (‘n-step-ahead’ or ‘forward simulation’): we use the entire observed
data to fit the model based on its short-term behavior, and then use the inferred
parameters and the initial conditions to deterministically simulate the entire duration of
the time series using the model framework.

We compared the observed against expected values using the one-serotype and two-
serotype models in scatterplots (Figure S43 for 1997 to 2015, and Figure S44 for 2000
to 2015). We aggregated counts over 4-week bins, and fit a simple linear regression
with no intercept term for each comparison. We found that for both EV-A71 and CV-
A16, incorporating cross-protection at the optimal values leads to a better fit (i.e., closer
to the y = x line). We also compared the cross-wavelet spectra of the observed data
and the model-predicted time series (Figure S45), using similar methods as described in
Section S3, here taking the square root transformations and plotting the bias-corrected
power. We see that the comparison series are largely in phase at the one-year period
(i.e., the phase arrows generally point right), but that the two-serotype model fits are
better able to capture the observed multi-annual cycles of EV-A71 (Figure S45C).

External (strictly out-of-sample) predictability

Second, we assessed external predictability, namely how well we are able to predict
incidence forward in time. This was done with cross-validation studies by fitting the
models to only the first half of the time series data (‘training set’) and testing how well it
predicts the qualitative and quantitative characteristics of the second half (‘testing set’)
out-of-sample. Out-of-sample fit is a much more difficult test of the model than forward
prediction (internal predictability) [26], since none of the data from the testing set is used
in parameter estimation. As such, we allowed for a ‘reset’ of the initial conditions at time
t* (S and I+ ; for serotype i, as well as I, ; for the k; prior time-steps in the two-
serotype case) at their true values, at the start of the out-of-sample model fit.

For the 1997 to 2015 dataset, we initiated the reset at the start of 2007, such that the

training set consists of 10 years of data (1997 to 2006, inclusive) and the testing set
consists of 9 years of data (2007 to 2015, inclusive). For the 2000 to 2015 dataset, we
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initiated the reset at the start of 2011, such that the training set also consists of 10 years
of data (2000 to 2009, inclusive) and the testing set consists of 6 years of data (2010 to
2015, inclusive), fixing cross-protection parameters in the two-serotype model at the
optimal values from 1997 to 2015.

In Figure S46 and Figure S47, we plot the time series of the out-of-sample testing set
predictions. We see that model fit is overall worse than in internal predictability tests (in
line with expectations), but that the two-serotype model with cross-protection provides
an improved visual fit over the one-serotype model. We also compared the observed
against expected values using both the one-serotype and two-serotype models in an
scatterplot (Figure S48 for 1997 to 2015, and Figure S49 for 2000 to 2015). We
aggregated counts over 4-week bins, and fit a simple linear regression with no intercept
term for each comparison. While the fits are generally worse than in Figure S43 and
Figure S44, we found that for both EV-A71 and CV-A16, incorporating cross-protection
(at the optimal values of k) also leads to a better out-of-sample fit. Comparisons of
internal and external predictability are provided in Table S8 and Table S9. There has
been a great deal of work on out-of-sample predictability and phase dependence in time
series analysis (e.g., [27] and references therein), and we emphasize that the exercise
performed here is a starting point for more in-depth analysis.
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models, 1997 to 2015. Observed data (x-axis) against model-predicted time series (y-

axis), adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-
serotype model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype

model for EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear
regression without an intercept and 95% confidence interval in green (EV-A71) and red
(CV-A16), and the y = x line in black.
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Figure S44: Internal predictability of the one-serotype and two-serotype TSIR
models, 2000 to 2015. Observed data (x-axis) against model-predicted time series (y-
axis), adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-

serotype model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype

model for EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear
regression without an intercept and 95% confidence interval in green (EV-A71) and red
(CV-A16), and the y = x line in black.
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Figure S45: Cross-wavelet analysis of observed data and the output of one-
serotype and two-serotype TSIR models, 1997 to 2015. Cross-wavelet power
spectrum of square root-transformed observed data and model-predicted time series (x-
axis is time (year), y-axis is the period (in years), and color is the bias-corrected power
spectrum) for the: (A) One-serotype model for EV-A71. (B) One-serotype model for CV-
A16. (C) Two-serotype model for EV-A71. (D) Two-serotype model for CV-A16. Cone of
influence in white (where edge effects become important), and phase arrows in black.
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Figure S46: Out-of-sample model predictions of the one-serotype and two-
serotype TSIR models, on testing data from 2007 to 2015 (fit to training data from
1997 to 2006). Observed time series (black) against predicted out-of-sample model fit
(blue (EV-AT1) or purple (CV-A16)), adjusted for reporting rate, for the: (A) One-
serotype model for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B)
One-serotype model for CV-A16. (C) Two-serotype model for EV-A71. (D) Two-
serotype model for CV-Al6.
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Figure S47: Out-of-sample model predictions of the one-serotype and two-
serotype TSIR models, on testing data from 2010 to 2015 (fit to training data from
2000 to 2009). Observed time series (black) against predicted out-of-sample model fit

(blue (EV-AT1) or purple (CV-A16)), adjusted for reporting rate, for the: (A) One-
serotype model for EV-A71 (x-axis is time (year), y-axis is weekly number of cases). (B)

One-serotype model for CV-A16. (C) Two-serotype model for EV-A71. (D) Two-

serotype model for CV-A16.
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Figure S48: External predictability of the one-serotype and two-serotype TSIR
models, on testing data from 2007 to 2015 (fit to training data from 1997 to 2006).
Observed data (x-axis) against out-of-sample, model-predicted time series (y-axis),
adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-serotype
model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype model for
EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear regression
without an intercept and 95% confidence interval in green (EV-A71) and red (CV-Al6),
and the y = x line in black. Color of point corresponds to distance since the start of the
testing set (t*).
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Figure S49: External predictability of the one-serotype and two-serotype TSIR
models, on testing data from 2010 to 2015 (fit to training data from 2000 to 2009).
Observed data (x-axis) against out-of-sample, model-predicted time series (y-axis),
adjusted for reporting rate and aggregated to 4-week bins, for the: (A) One-serotype
model for EV-A71. (B) One-serotype model for CV-A16. (C) Two-serotype model for
EV-A71. (D) Two-serotype model for CV-A16. Fitted line from simple linear regression
without an intercept and 95% confidence interval in green (EV-A71) and red (CV-Al6),
and the y = x line is in black. Color of point corresponds to distance since the start of

the testing set (t*).
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Test | Model |Serotype| Training | Testing R? R? R? Figures
set set 1997-2015 | 1997-2006 | 2007—2015
Internal 1 EV-A71 | 1997- NA 0.38637 0.54563 0.20564 3B
2015 S43A
Internal 1 CV-Al6 | 1997- NA 0.66372 0.84259 0.53191 3D
2015 S43B
Internal 2 EV-A71 | 1997- NA 0.85117 0.87861 0.81362 5B
2015 S43C
Internal 2 CV-Al6 | 1997- NA 0.77507 0.81130 0.78625 5D
2015 S43D
External 1 EV-A71 | 1997- 2007- — 0.66988 0.18514 S46A
2006 2015 S48A
External 1 CV-Al6 | 1997- 2007- — 0.83335 0.28831 S46B
2006 2015 S48B
External 2 EV-A71 | 1997- 2007- — 0.06323 0.63783 S46C
2006 2015 S48C
External 2 CV-Al6 | 1997- 2007- - 0.58955 0.56911 | S46D
2006 2015 S48D

Table S8: Comparison of internal and external predictability, with 1997 as start
year. R? of observed data against predicted model fit by test, model, and serotype,
aggregated to 4-week bins, for the entire time series (1997 to 2015), the duration of the
training set (1997 to 2006), and the duration of the testing set (2007 to 2015).
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Test | Model |Serotype| Training | Testing R? R? R? Figures
set set 2000-2015|2000-2009 | 2010-2015
Internal 1 EV-A71 | 2000- NA 0.43562 0.62887 0.15934 S26B
2015 S44A
Internal 1 CV-Al6 | 2000- NA 0.61176 0.72289 0.48581 S26D
2015 S44B
Internal 2 EV-A71 | 2000- NA 0.75223 0.87690 0.55856 S36B
2015 S44C
Internal 2 CV-Al6 | 2000- NA 0.63901 0.69269 0.60963 | S36D
2015 S44D
External 1 EV-A71 | 2000- 2010- — 0.62547 0.74123 S4TA
2009 2015 S49A
External 1 CV-Al6 | 2000- 2010- — 0.71913 0.49196 S47B
2009 2015 S49B
External 2 EV-A71 | 2000- 2010- — 0.44019 0.52971 S47C
2009 2015 S49C
External 2 CV-Al6 | 2000- 2010- - 0.66015 0.62536 | S47D
2009 2015 S49D

Table S9: Comparison of internal and external predictability, with 2000 as start
year. R? of observed data against predicted model fit by test, model, and serotype,
aggregated to 4-week bins, for the entire time series (2000 to 2015), the duration of the
training set (2000 to 2009), and the duration of the testing set (2010 to 2015).
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S8. Reuvisiting HFMD serotype interactions in China

The dynamics of EV-A71 in China have been reported to be qualitatively different from
those in Japan: in China, the serotype has been shown to display annual cycles since
HFMD became a notifiable disease in 2008 [10]. The drivers of these differences have
yet to be systematically explored, and is an important area for future work. An additional
wrinkle could be due to differences in the surveillance and sampling methodologies:
because there had been so many reported HFMD cases in China (due to its status as a
notifiable disease), the protocol involved sampling the first five mild cases per location
per month in addition to all severe cases [10].

In our previous analysis [22] on HFMD in China using weekly virologic and syndromic
reports between 2009 and 2013 by province and the two-serotype TSIR model, we
estimated the population-weighted mean duration and strength of cross-protection
following infection with EV-A71 or CV-A16 to be 9.95 weeks (95% CI: 3.31, 23.40) in
68% (95% CI: 37%, 96%) of the population, resulting in a mean duration of cross-
protection of 6.77 weeks (95% CI: 2.50, 10.03). While we were able to detect a robust
signature of herd immunity driving the outbreak dynamics of HFMD in China, we
assumed cross-immunity to be symmetric in light of the necessarily short length of these
time series.

In Figure S50 we show abridged results of re-analyzing the Chinese data, now
incorporating an asymmetry in cross-immunity. We fixed the k values at those optimized
in the Japanese data (i.e., k = 8 weeks of complete cross-immunity against CV-A16
after infection with EV-A71, and k = 39 weeks of complete cross-immunity against EV-
AT71 after infection with CV-A16, and also setting a; at 0.975), and fit all of the other
parameters in this same framework. We did this for each of the four direct-controlled
municipalities of China (Beijing, Chongqging, Shanghai, and Tianjin), which exhibit
different seasonal patterns of HFMD. In line with our expectations, we find that including
an asymmetric cross-protection gives reasonable model fits in terms of forward
simulations.

We also previously showed that EV-A71 vaccination should not lead to a competitive
release of CV-A16 [22], since we estimated cross-protection against CV-A16 following
infection with EV-A71 to be sufficiently low that it would not lead to an increase in CV-
A16 (though there are complexities introduced by factors such as the interactions of
vaccination with seasonality [28]). We would expect to arrive at similar qualitative
conclusions in the Japanese context, since we estimate the cross-protective effect of
EV-A71 infection on CV-A16 to be similarly low.
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Figure S50: Deterministic two-serotype TSIR output for EV-A71 and CV-Al6 in
China with asymmetric cross-protection, 2010 to 2013. Observed time series (black)
against predicted model fit for EV-A71 (green) and CV-A16 (red), adjusted for reporting

rate, in: (A) Beijing. (B) Tianjin. (C) Shanghai. (D) Chongqging.
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S9. Simulation studies

Checking susceptible reconstruction in the two-serotype TSIR model

The two-serotype TSIR model does not distinguish between primary and secondary
infection. In other words, because the two-serotype susceptible reconstruction
methodology yields a time series of S, ;, the number of individuals susceptible to
serotype i at time t (see Section S6), we do not know if an individual who is about to
become infected with one serotype has previously been infected with the other serotype
or not. We tested the validity of this procedure by constructing a two-serotype, discrete-
time SIR model with cross-protection (this is known as the SICR model: the
compartments are shown in the center inset of Figure S51, and it is adapted from the
continuous-time model presented in [29]). We made TSIR-like assumptions, such as
again that every individual gets infected with both serotypes over the course of their life,
and deaths are not explicitly modeled because it is assumed that the infections precede
death for childhood diseases such as HFMD, in developed settings such as Japan.

There are 10 compartments in this full model adopting the naming convention of
[immune status to EV-A71] [immune status to CV-A16], allowing for the possible
statuses of susceptible (S), infected (I), cross-protected against the other serotype
following infection (C), or recovered (R). This framework distinguishes between primary
and secondary infection, and we deterministically simulated from this full model under a
given parameter set: here, we simulated weak, asymmetric cross-protection as in the
main analysis, fixing cross-protection values at k = 7 weeks following primary infection
with EV-A71 and k = 38 weeks following primary infection with CV-A16, along with a; =
0.97 and identical g, for the two serotypes, as shown in Figures S52A-B.

Taking the output of this full model (assuming perfect reporting), we aggregated the
simulated primary and secondary infection with each serotype to generate time series
similar to our observed data, namely counts of infection with a serotype at each time-
step: Iy gy-a71 = IS¢ + IR, and Iy cy_a16 = SI; + RI, (Figures S52C-D). We then
performed two-serotype susceptible reconstruction (generating S; gy_471 and S; cy_a16 @S
described in Section S6) based on I; gy_471 and I cy_a16, as well as the simulated
demographic parameters. We compared these reconstructed susceptibles (green and
red lines in Figure S53) against two different types of susceptibles: (1) S¢ gy-a71 = SS¢ +
SRy and Sy cy_a16 = SS¢ + RS, which represent ‘effective’ susceptibles (i.e., those who
could become infected with a given serotype), and (2) S¢ gy-a71 = SS¢ + SI + SC; + SR,
and S cy_a16 = SS¢ + IS¢ + CS¢ + RS, which represent true or ‘immunological’
susceptibles (i.e., those who have never been infected with a given serotype). The
discrepancy between (1) and (2), or SI; + SC; and IS; + CS;, include individuals who are
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immunologically naive to the serotype under consideration, but who could not become
infected with it during the next time-step.

In Figure S53 we see that two-serotype susceptible reconstruction is able to recover the
gualitative temporal patterns of such ‘effective’ susceptibles (black lines) more closely
than it can of ‘immunological’ susceptibles (grey lines). For ease of comparison, we plot
Z.;, or the deviations around the mean number of susceptible individuals to serotype i
(S,) at time t. The simple two-serotype TSIR model with cross-protection is reasonable
to a first approximation since the difference between ‘immunological’ and ‘effective’
susceptibles, which are SI; + SC; and IS; + CS;, represent a small proportion of the
population at any point in time (taking on a maximum value of 1.4% over the entire time
series). Therefore, the two-serotype susceptible reconstruction procedure is adequately
able to account for not having the immune status to both serotypes in the data.

Testing the elasticity of periodicity to cross-protection parameters: methodology

To construct Figure 6 in the main text, we simulated time series from the deterministic
two-serotype TSIR model, varying the durations of cross-protection after CV-A16
infection from 0 to 52 weeks. For comparability, we elected to fix the duration of cross-
protection after EV-A71 infection at its optimal value of kgy,_47; = 8 weeks. We ran
simulations for 50 years under realistic demography, fitting all other parameters
(besides cross-protection) and removing the initial 30 years to run out the transient
dynamics. After reaching the endemic equilibrium (with seasonality), we obtained
stationary time series of the two serotypes.

We calculated the periodogram of the log-transform of each stationary time series and
extracted the spectral density as a function of the period (with a maximum of 6 years),
using the spectrum function in R. The periodogram is appropriate here since the time
series is at equilibrium so there are no long-term temporal changes (as opposed to in
the real data where it was more appropriate to use wavelet analysis, see Section S3).
The spectral densities of log-transformed EV-A71 and CV-A16 incidence are smoothed
and obtained for each discrete value of k.,_41¢ between 0 and 52 weeks. To assess the
statistical significance of peaks in the observed spectrum, we compared it to a null white
noise spectrum, which has an even distribution of variance over frequency (period?)
[30]. This was generated by randomly re-ordering each time series and calculating its
spectral density, repeated over 100,000 iterations. The 2.5 quantile of the simulations
at each frequency is determined to be the lower bound for significance. Thus Figure 6 in
the main text is a composite pseudo bifurcation diagram, showing only the magnitude of
spectral densities that are significant at this threshold.
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Figure S51: Simulated time series from the full two-serotype SICR model. Inset
figure (at center) shows flow between 10 compartments, corresponding to the time
series (simulated over 20 years) shown and labeled on the perimeter. Births
immediately enter the SS class. The k; and k, indicate the duration of cross-protection
following primary infection with EV-A71 and CV-A16, respectively. The green time
series refer to EV-A71 infection, and the red time series refer to CV-A16 infection.
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Figure S52: Seasonal transmission rate and aggregated time series from the full
two-serotype SICR model. (A) S, values for EV-A71 (x-axis is week). (B) S, values for
CV-A16. (C) Time series of I; gy_a71 = IS, + IR, (x-axis is year). (D) Time series of
Iy cv-a16 = SIt + Rl
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Figure S53: Susceptibles from the full two-serotype SICR model and
reconstructed susceptibles from its aggregated time series. (A) Z; (the deviations
around the mean number of susceptible individuals (S) at time t) for EV-A71 as
calculated from the time series of ‘effective’ susceptibles (black), the time series of
‘immunological’ susceptibles (grey), and susceptibles as reconstructed from the two-
serotype TSIR model (green). (B) Z, for CV-A16 as calculated from the time series of
‘effective’ susceptibles (black), the time series of ‘immunological’ susceptibles (grey),
and susceptibles as reconstructed from the two-serotype TSIR model (red).
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