
THE ECOLOGY OF MOVEMENT AND BEHAVIOUR:

A SATURATED TRIPARTITE NETWORK FOR DESCRIBING

ANIMAL CONTACTS

Supplementary Materials

Kezia Manlove, Christina Aiello, Pratha Sah, Bree Cummins, Peter J. Hudson, Paul C. Cross

August, 2018

Contents

1 Quantifying information sharing in (I, S, T ) 2

1.1 Special considerations due to the structure of (I, S, T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Why take an information theoretic approach? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Some definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Quantifying mutual information in Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Applying marginal constraints using the tripartite model 5

2.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Simulation protocol for Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Home-range simulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Validating the distributional form for relative patch qualities in Example 1 . . . . . . . . . . . 11

2.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Simulating aggregation size for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Simulation protocol for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



1 Quantifying information sharing in (I, S, T )

In this section, we provide more detail on the mutual information approach taken in The tripartite model links animal

behaviour to network projections of the main text.

1.1 Special considerations due to the structure of (I, S, T )

The full tripartite model can be constructed from a dataframe in which rows are individual location events, with

columns indicating identity of the individual involved, the coordinates of the individual’s location, and the date and

time the record was collected. This data structure has a few special features that merit specific mention. We imagine a

dataset with NObservations total observations (so, NObservations rows). First, the data are of mixed-type, since individual

identity (I) is a discrete, categorical (but not ordinal) variable denoting NIndividuals different individual identities. In

some cases, it may be convenient to expand I to an NObservations × (NIndividuals − 1) matrix of indicator variables.

Location in space (S) is nearly always denoted as a multidimensional vector (e.g., (X,Y ) where X and Y denote

longitude and latitude, respectively). Time (T ) can be fully represented in one dimension. The higher-dimensional

representations of I and S could be bound to T to generate a fully expanded (I, S, T ) matrix, which we refer to below

as M. We note that the information in this multidimensional representation needs to rescaled so that all columns in

the indicator individual set are compared on an equal footing to two- or three-dimensional description of S, and the

one-dimensional T .

1.2 Why take an information theoretic approach?

As described in the main text, one utility of the tripartite model is its ability to capture how behavioral motifs

constrain correlation structures within (and thus the dimension of) (I, S, T ). Practically speaking, the correlation

structure can be captured by quantifying the information shared among the I,S, and T variables. We could quantify

shared information in a variety of ways, including through classic (albeit linear) dimension reduction methods like

Principal Coordinates Analysis (PCoA) [1], or through an ensemble of generalized linear models (GLMs) in which

each column is modeled in response to the others. However, the PCoA approach cannot readily capture the S × T

relationship that characterizes group size, and the GLM-based approaches are problematic because they do not allow

direct comparison among different metric combinations. For example, the Akaike Information Criterion for a model

fitting I as a function of S and T is based on a fundamentally different data structure than a model that treats S

as a function of I and T , simply because the data are of mixed type. The same logic extends to Likelihood Ratio

Test-based comparisons: models of one variable as a function of the others are not nested, and thus cannot be directly

compared.
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The assumption violations associated with both the eigen-based PCoA and GLM approaches motivated us to

consider the underlying information directly through an information-theoretic lens.

1.2.1 Some definitions

We first consider discretized versions of all three variables, (I, S, T ), and for the time being, we take S to be one-

dimensional (i.e., we imagine individuals moving along a line). For reference and consistency, we define a few key

information-theoretic terms below. Information for the various behavioural datasets shown in Figure 4 of the main

text were quantified using the infotheo package in R [2].

Definition 1 The entropy of a discrete random varible I with pmf p(I) is

H(I) = H(p(I)) = −
∑
i∈I

p(i) log(p(i)) = EI

[
log

1

p(i)

]
(1)

In layman’s terms, an observation’s entropy is the amount of “surprisal” it carriers. In aggregate, a system’s entropy

is its unpredictability. Unusual observations (e.g., an individual observed far outside its typical home range) carry

more entropy than more “typical” observations of the same individual.

Definition 2 The joint entropy H(I, S, T ) is

H(I, S, T ) = −
∑
i∈I

∑
s∈S

∑
t∈T

p(i, s, t) log(p(i, s, t) (2)

In layman’s terms, joint entropy is simply the entropy of a set of variables (as opposed to a single variable). The

largest possible value of the joint entropy is the sum of the individual entropies of the contributing variables. This

maximum is attained in the case where all variables are independent of one another.

Definition 3 The conditional entropy of I given (S, T ) is

H(I|(S, T )) = −
∑
i∈I

∑
s∈S

∑
t∈T

p(i, s, t) log (p(i|(s, t)) (3)

In layman’s terms, conditional entropy measures the uncertainty remaining in I after the values of variables S and

T are known. Conditioning always reduces entropy, due to a relationship known as the “chain rule of conditional

entropy”, which states that if X1, X2, ..., Xn are drawn according to p(X1, X2, ..., Xn), then

H(X1, X2, ..., Xn) =

n∑
i=1

H(Xi|Xi−1, ..., X1). (4)
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The conditional entropy of H (I|(S, T )) = 0 if I is completely determined by S and T . If H (I|(S, T )) = H (I), then I

is completely independent of S, T .

Definition 4 The mutual information between variables X and Y , M(X;Y) is the reduction in entropy due to

conditioning:

I(Y ;X) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(5)

In essence, mutual information describes the mutual dependence between two variables. It tells us how much infor-

mation we have about X when Y is known. This can alternatively be thought of as the Kullback-Leibler divergence

between the joint distribution p(X,Y ) and the product distribution, p(X)p(Y ).

Mutual information is closely related to correlation, but unlike correlation, it is not limited to real values. It is

constrained to be non-negative, and only equals zero in the case where the variables involved are independent of one

another. We show direct application of mutual information to quantify information sharing among elements of (I, S, T )

in Figure 4 of the main text in the Section 1.3 of this supplementary document.

1.3 Quantifying mutual information in Figure 3

Figure 3 in the main text shows tripartite tagging networks for four different imagined societies. In all cases, there

are six individuals observed at five points each in time, producing an data matrix of 30 observations (rows). The

M matrix therefore requires columns for five individual indicator variables, two spatial coordinates (we imagine a

row of patches here, so one spatial coordinate is always set to “1”), and one temporal coordinate, so that M =

[I1, I2, I3, I4, I5, S1, S2, T ]. Data matrices for all four panels are shown below. We used these matrices as a basis for

calculating mutual information between pairs of variables in each case. Those mutual information values were used in

turn to build the Venn diagrams in Figure 3.
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3a =



1 0 0 0 0 1 1 1

1 0 0 0 0 1 2 2

1 0 0 0 0 1 1 3

1 0 0 0 0 1 3 4

1 0 0 0 0 1 5 5

0 1 0 0 0 1 1 1

0 1 0 0 0 1 2 2

0 1 0 0 0 1 3 3

0 1 0 0 0 1 3 4

0 1 0 0 0 1 6 5

0 0 1 0 0 1 1 1

0 0 1 0 0 1 2 2

0 0 1 0 0 1 5 3

0 0 1 0 0 1 3 4

0 0 1 0 0 1 1 5

0 0 0 1 0 1 5 1

0 0 0 1 0 1 5 2

0 0 0 1 0 1 5 3

0 0 0 1 0 1 5 4

0 0 0 1 0 1 3 5

0 0 0 0 1 1 5 1

0 0 0 0 1 1 6 2

0 0 0 0 1 1 5 3

0 0 0 0 1 1 1 4

0 0 0 0 1 1 3 5

0 0 0 0 0 1 1 1

0 0 0 0 0 1 3 2

0 0 0 0 0 1 5 3

0 0 0 0 0 1 5 4

0 0 0 0 0 1 5 5



; 3b =



1 0 0 0 0 1 1 1

1 0 0 0 0 1 3 2

1 0 0 0 0 1 2 3

1 0 0 0 0 1 6 4

1 0 0 0 0 1 4 5

0 1 0 0 0 1 1 1

0 1 0 0 0 1 3 2

0 1 0 0 0 1 2 3

0 1 0 0 0 1 6 4

0 1 0 0 0 1 4 5

0 0 1 0 0 1 1 1

0 0 1 0 0 1 3 2

0 0 1 0 0 1 2 3

0 0 1 0 0 1 6 4

0 0 1 0 0 1 4 5

0 0 0 1 0 1 3 1

0 0 0 1 0 1 5 2

0 0 0 1 0 1 6 3

0 0 0 1 0 1 2 4

0 0 0 1 0 1 5 5

0 0 0 0 1 1 3 1

0 0 0 0 1 1 5 2

0 0 0 0 1 1 6 3

0 0 0 0 1 1 2 4

0 0 0 0 1 1 5 5

0 0 0 0 0 1 3 1

0 0 0 0 0 1 5 2

0 0 0 0 0 1 6 3

0 0 0 0 0 1 2 4

0 0 0 0 0 1 5 5



; 3c =



1 0 0 0 0 1 1 1

1 0 0 0 0 1 2 2

1 0 0 0 0 1 3 3

1 0 0 0 0 1 4 4

1 0 0 0 0 1 5 5

0 1 0 0 0 1 1 1

0 1 0 0 0 1 2 2

0 1 0 0 0 1 3 3

0 1 0 0 0 1 4 4

0 1 0 0 0 1 5 5

0 0 1 0 0 1 1 1

0 0 1 0 0 1 2 2

0 0 1 0 0 1 3 3

0 0 1 0 0 1 4 4

0 0 1 0 0 1 5 5

0 0 0 1 0 1 1 1

0 0 0 1 0 1 2 2

0 0 0 1 0 1 3 3

0 0 0 1 0 1 4 4

0 0 0 1 0 1 5 5

0 0 0 0 1 1 1 1

0 0 0 0 1 1 2 2

0 0 0 0 1 1 3 3

0 0 0 0 1 1 4 4

0 0 0 0 1 1 5 5

0 0 0 0 0 1 1 1

0 0 0 0 0 1 2 2

0 0 0 0 0 1 3 3

0 0 0 0 0 1 4 4

0 0 0 0 0 1 5 5



3d =



1 0 0 0 0 1 1 1

1 0 0 0 0 1 1 2

1 0 0 0 0 1 1 3

1 0 0 0 0 1 1 4

1 0 0 0 0 1 1 5

0 1 0 0 0 1 2 1

0 1 0 0 0 1 2 2

0 1 0 0 0 1 2 3

0 1 0 0 0 1 2 4

0 1 0 0 0 1 2 5

0 0 1 0 0 1 3 1

0 0 1 0 0 1 3 2

0 0 1 0 0 1 3 3

0 0 1 0 0 1 3 4

0 0 1 0 0 1 3 5

0 0 0 1 0 1 4 1

0 0 0 1 0 1 4 2

0 0 0 1 0 1 4 3

0 0 0 1 0 1 4 4

0 0 0 1 0 1 4 5

0 0 0 0 1 1 5 1

0 0 0 0 1 1 5 2

0 0 0 0 1 1 5 3

0 0 0 0 1 1 5 4

0 0 0 0 1 1 5 5

0 0 0 0 0 1 6 1

0 0 0 0 0 1 6 2

0 0 0 0 0 1 6 3

0 0 0 0 0 1 6 4

0 0 0 0 0 1 6 5



;

(6)

Code to build Figure 3 is included in the Code appendix to this supplement.

2 Applying marginal constraints using the tripartite model

In this section, we provide additional detail on the simulation protocols that we used to build constrained tripartite

(and subsequently, unipartite) networks in section Simulating tripartite networks subject to marginal constraints in the

main text.

A tripartite network can be written as an array of timestep-specific individual-by-site matrices (written I×S|T = t).

At its finest resolution this array is binary, with cells containing ones when a specific individual is present at a particular

site during a particular time, and zeroes otherwise. The total number of ones in the array corresponds to the total

number of edges in the tripartite network, and each unique configuration of a fixed number of ones within the array
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describes one possible network. In the two examples below, we constrain one or several margins of this array, and

simulate the position of a fixed number of ones subject to those marginal constraints. We then compare network

metrics from simulated-but-constrained networks to network metrics calculated on simulated networks with the same

total number of ones, but without marginal constraints.

2.1 Example 1

In Example 1, we imagine simulating a tripartite network subject to fixed constraints on individual home-range size

and patch occupancy patterns, and using that network as a basis for generating a priori expectations about network

modularity within the individual association network projection. In this example, those constraints were a marginal

Gamma(κ = 5, θ = 2) distribution on home range size, and a marginal Gamma(κ = 0.5, θ = 50) distribution on patch

occupancy frequencies.

2.1.1 Simulation protocol for Example 1

Prior to simulation, we generated data on two imagined variables, home range size and patch quality. Data were

generated according to two different scenarios. In the first scenario, we considered a system where space use was

highly overdispersed, so that most patches were used very rarely, while a few were used with extremely high frequency

(Figure 4B in the main text). In the second scenario, we considered a system in which patches were relatively

homogeneous in quality, so that all patches were used with similar frequency (Figure 4C in the main text).

In the first scenario, home range sizes were generated by a draw of 50 samples from a Gamma(κ = 5, θ = 2)

distribution, with all values rounded up to the nearest integer. Patch quality values were generated by a single draw

of size 30 from a Gamma (κ = 0.5, θ = 50) distribution. In the second scenario, home range sizes were generated by a

draw of 50 samples from a Gamma(κ = 2, θ = 2) distribution, with all values rounded up to the nearest integer. Patch

quality values were generated by a single draw of size 30 from a Gamma (κ = 5, θ = 10) distribution. Each value was

then divided by the sum of all 30 values so that patch quality summed to 1 across all patches.

Following data generation, we simulated tripartite networks subject to these “observed” constrains using the

protocol outlined here. An example of Step 6 is shown in detail in the subsequent section, labeled Home range

simulation example.

1. Create NIndividuals = 50 individual nodes, NPatches = 30 patch nodes, and NTimesteps = 40 time nodes.

2. Assign NTimesteps “stubs” to each Individual node.

3. Draw a home range size for each individual (sampled with replacement from the observed distribution of home

range sizes, and constrained so that the number of patches in each home range could not exceed NTimesteps).
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4. Draw a quality value for each patch (sampling with replacement from the observed distribution of patch qualities).

5. Identify the specific patches within each individual’s home range.

(a) Sum the home range sizes of all individuals to determine a total number of patches to assign to individual

home ranges.

(b) Draw that total number of patch labels from a multinomial distribution of patch qualities. This generates

a “Full urn” of home range patches.

(c) Select an individual at random, and work through the following steps:

i. Draw a number of patches equal to the selected individual’s home range size from the Full urn of home

range patches.

ii. Check to be certain that all patches drawn have unique labels. Redraw until a set of all unique patches

is obtained.

iii. Update the Full urn to a Reduced urn, by removing one patch of each type drawn by this individual.

The next randomly selected individual will draw from the Reduced urn1.

(d) Select a new individual at random from the set of individuals whose home range patches have not been

designated, and repeat this process.

6. Generate a number of visits to each patch within a home range, conditional on home range size and composition.

(a) Identify a set of home range patches for each individual, conditional on individual home range size. This

is done by drawing Home Range Sizei patch labels without replacement from a Discrete Uniform(min = 1,

max = NPatches) distribution.

(b) Require each individual to visit every patch within its home range at least once. Say for instance that the

ith individual’s home range encompasses j patches. Then the remaining visits to be allocated for Individual

i would be

Remaining visitsi = NTimesteps − j

(c) Allocate the remaining visits to patches as follows.

i. Determine the number of additional timesteps to be allocated across all individuals,

NAllocation total =
∑
i∈I

Remaining visitsi

where I is the set of all individuals.
1If it is not possible to draw enough uniquely labeled patches, draw patches directly from the original Full urn.
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ii. Generate a single draw of size NAllocation total patch labels from a multinomial distribution with prob-

abilities equal to the probabilities in the patch quality distribution. This multinomial draw produces a

“Full urn”, containing NAllocation total patches distributed according to the patch quality distribution.

iii. Randomly select a focal individual.

iv. Identify an “Individual-specific urn” for the focal individual by subsetting the Full urn down to only

those patches in the Full urn that are also contained in the focal individual’s home range.

v. Draw the appropriate number of visits (NTimesteps − (Focal individual’s home range size)) from the

Individual-specific urn without replacement.2 The focal individual’s total space use is described by this

set of patches, combined with one additional visit to each patch in the focal individual’s home range.

vi. Remove the patch visits for the focal individual from the Full urn to produce a Reduced urn.

vii. Remove the focal individual from the set of possible animals, select a new individual from this reduced

set at random, and repeat the process, this time using the Reduced urn in place of the Full urn.

viii. After identifying a set of patches for the new individual, remove that individual from the set of in-

dividuals, and remove the new individual’s patches from the Reduced urn to create a Reduced urn’.

Randomly select a third individual.

ix. Continue this process until all individuals have been chosen.

We include an example of this simulation process in the next section, Home-range simulation example.

7. Once a set of 40 patch visits is identified for all individuals, randomly assign a timesteps to each patch visit by

each individual (now sampling without replacement from the set of timesteps).

8. Bind Individual Identity, Patch, and Time vectors together into a data frame. Build an “Aggregation” variable

by pasting Patch and Time labels together for each row. Use the Individual Identity and Aggregation variables to

construct a bipartite individual-aggregation network. Project that network down to the corresponding individual

association network.

9. Use a four-step walk trap algorithm to calculate modularity on the individual association network, and store the

modularity value produced. Modularity (Q) was calculated as:

Q =
1

(2m)

∑
ij

[
Aij −

kikj
(2m)

]
δ (cI , cj) (7)

where m equals the total number of edges in the graph, i and j index particular nodes with degrees ki and

2If the size of the Individual-specific urn is less than the number of visits, expand the Individual-specific urn as follows. Retain its
original contents, and add to them a sample of patches from the Individual-specific urn drawn with replacement, that is equal in size to
the additional number of patches required.
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kj respectively. Aij is the adjacency matrix, ci and cj identify the graph components in which nodes i and j

are members, with δ(ci, cj) describing agreement between those components (i.e., δ(ci, cj) = 1 if ci = cj , and 0

otherwise).

2.1.2 Home-range simulation example

Imagine a population of 3 individuals (I1, I2, I3), occupying 4 patches (A, B, C, D) over 5 Timesteps (T1, T2, T3, T4, T5).

After Steps 3 and 5a, Individuals are determined to have the following home-ranges:

• I1 has home-range {A,B}

• I2 has home-range {A,C}

• I3 has home-range {B,C}.

The relative patch quality distribution is Pr[A] = .15, P r[B] = .25, P r[C] = .6.

I1 must visit each patch in its home-range at least once, so it must spend at least one timestep in A and one

timestep in B; I2 must spend at leat one timestep in A and one timestep in C; and I3 must spend at least one timestep

in B and one timestep in C.

Step i: For each individual, two timesteps must be used to cover the individual’s home-range, leaving three

timesteps that can be allocated to patches at random, according to the patch occupancy distribution. This means

that NAllocation total = 9.

Step ii: Generate a draw of size 9 from a Multinomial(.15, .25, .6). In this example, assume this draw produces the

following Full urn:

Full urn = {A,A,B,B,B,C,C,C,C}

Step iii: Randomly select an individual, in this case, Individual 2.

Step iv: Generate an Individual 2-specific urn by limiting the Full urn to only those patches that are in Individual

2’s home range, {A,C}. This produces an Individual 2-specific urn of:

Individual 2-specific urn = {A,A,C,C,C,C}

Step v: Since Individual 2 must spend one timestep in A, and one timestep in C, and we have 5 timesteps, 3

timesteps remain to be assigned. Identify these patches by drawing 3 elements without replacement from the Individual

2-specific urn. Presume these elements are {C,C,C}. All of Individual 2’s patch visits over the 5 timesteps are then
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described by these three elements, plus an additional visit to A and C:

Individual 2’s patch visits = {A,C,C,C,C}

Step vi: Produce the Reduced urn by removing the patches drawn by Individual 2 from the Full urn:

Reduced urn = {A,A,B,B,B,C,C,C,C} − {C,C,C} = {A,A,B,B,B,C}

Step vii: Select a new individual from the remaining individuals (here, I1 and I3; presume in this case that we

drew I3, with home-range {B,C}. The Individual 3-specific urn consists of all elements in the Reduced urn that are

also in Individual 3’s home range:

Individual 3-specific urn = {B,B,B,C}

Draw a sample of size 3 without replacement from this Individual 3-specific urn. In this case, say this sample consists

of {B,B,C}. Add one additional visit to each patch in Individual 3’s home-range to get Individual 3’s patch visits:

Individual 3’s patch visits = {B,B,B,C,C}

Step viii: Remove the sampled patches from the Reduced urn to get a Reduced urn’:

Reduced urn’ = {A,A,B,B,B,C} − {B,B,C} = {A,A,B}

Step ix: Remove I3 from the set of remaining individuals. Draw another individual from that set (in this case,

this must be I1). Generate an Individual 1-specific urn consisting of all elements in Reduced urn’ that are also in I1’s

home-range:

Individual 1-specific urn = {A,A,B}

Sample without replacement from the Individual 1-specific urn (here, getting the set {A,A,B}). Add one additional

visit to each patch in Individual 1’s home range to get Individual 1’s patch visits:

Individual 1’s patch visits = {A,A,A,B,B}

.

If there were additional individuals in the population, we would then generate a new Reduced urn”, sample a new

individual, and continue with this protocol until all individuals had been assigned patch visits.
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2.1.3 Validating the distributional form for relative patch qualities in Example 1

Drawing the patches included in each individual’s home range from a discrete uniform could potentially lead the realized

patch quality distribution to depart from the ones specified at the simulation’s outset. In particular, this method will

systematically increase realized use of patches of very low quality, and at the same time systematically decrease use of

patches of very high quality. We assessed the size of this departure by comparing emergent patch quality distributions

after applying constraints to the input distribution of patch qualities. Specifically, we compared maximum likelihood

fits of the realized patch quality distribution to the parameters specified at the simulation’s output.

We found that the distribution was only minimally changed. We initially drew patch quality rates from a

Gamma(α = 0.5, θ = 50) distribution. After determining patch occupancies as constrained by home range size

in Step 5, we estimated the Gamma distribution parameters under the observed patch occupancy rates. 95% of fitted

values of α fell between 0.45 and 0.55, while 95% of the fitted values for θ fell between 42.40 and 47.00. As a conse-

quence, while Steps 4 and 5 undoubtedly did alter the shape of the patch occupancy distribution away from its specified

structure, this change was qualitatively quite small. Maximum likelihood estimates for the Gamma distributions were

generated using the fitdist() function in R’s fitdistrplus package[3].

2.2 Example 2

In Example 2, our intent was to systematically vary the structure of the group size distribution (in habitat of hetero-

geneous quality), and observe how changes in that structure shifted the distributions of other marginal quantities.

2.2.1 Data generation

Prior to simulation, we generated mock data on both aggregation size and patch quality. We generated tuneable

aggregation size distributions by systematically varying the parameters of a Gamma(α, θ) distribution to generate an

a priori set of aggregation sizes (α ranged systematically on the log-scale from 0.5 to 50; θ ranged from 2 to 10). We

introduced heterogeneity in patch quality by requiring patches to be occupied in a specific order (so that in timesteps

with 5 aggregations, the 5 top-ranked patches were occupied, but when only 3 aggregations were present, the 4th and

5th-ranked patches were left empty). NIndividuals was set to 50, NPatches to 40, and NTimesteps to 40 throughout.

2.2.2 Simulating aggregation size for Example 2

In order to assign a fixed number of individuals to a variable number of aggregations in accordance with some user-

defined aggregation size distribution, we needed to place a probability distribution on all possible partitions of the

individuals into aggregations.
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We first considered drawing aggregation memberships from a multinomial distribution, with the probabilities in

the multinomial designed to capture the aggregation size distribution. This approach was problematic in two ways.

First, in order to conduct the multinomial draw, we needed to specify how many aggregations were present, so that

we could define the set of possible outcomes, and the length of the probability vector. This was problematic, since we

wanted to allow number of aggregations to emerge from the simulation. Second, even if we could appropriately define

the number of groups present (i.e., the multinomial’s “states”), calculating probabilities associated with each group so

that the expected distribution of individuals across groups matched our desired expectation was not trivial.

Figure 1: Aggregation size distributions generated by our simulation procedure using Gamma distributions with
variable scale (“θ”; left) and shape (“α”; right) parameter values.

Given the problems with the multinomial approach, we switched to a randomization scheme inspired by point

processes. We simulated aggregations uniquely for every day. Our strategy was to first generate NIndividuals points

from a Gamma(α, θ) distribution, where θ is a scale (as opposed to a rate) parameter. This gave us NIndividuals points

scattered (non-homogeneously) along the positive real line. We then cut the line into θ bins of equal length. All

individuals within a bin were then assigned to the same aggregation. Altering θ allowed us to systematically alter the

aggregation size distribution. Aggregation size distributions under various values of θ (and α) are shown in Figure 1.

2.2.3 Simulation protocol for Example 2

1. Create NIndividuals individual nodes, NPatches patch nodes, and NTimesteps time nodes.

2. Assign NTimesteps “stubs” to each Individual node

3. Generate a set of aggregations for each timestep, conditional on the number of individuals present at that
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timestep:

(a) Draw NIndividuals points from a Gamma(α, θ) distribution. This produces a set of NIndividuals points stochas-

tically positioned along a continuous line, with clustering dependent on the Gamma parameters.

(b) Split the points into bins with width 1
θ , and assign all individuals in the same bin to a common aggregation.

The number of aggregations (NAggregations) is the equal to the number of bins (see Section 3.2 above).

(c) Draw NAggregations patches without replacement from the set of NPatches. Allow for heterogeneous patch

quality by weighting the probability that each patch is drawn.

4. Bind Identity, Patch, and Time vectors together into a data frame. Build an “Aggregation” variable by pasting

Patch and Time labels together for each row. Use the Identity and Aggregation variables to construct a bipartite

individual-aggregation network. Project that network down to the corresponding individual association network.

5. Use a four-step walk trap algorithm to calculate and record modularity of the individual association network.

Calculate individual home range size by summing the total number of patches visited, and record mean home

range size. Calculate the size of each aggregation and record mean aggregation size.
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Code

The R code below was used to quantify mutual information and construct the Venn diagrams in Figure 3.

# Require infotheo package for calculating mutual information

require(infotheo)

# construct desired I,S,T dataframe, with I coded as a single, categorical variable.

# calculate all pairwise mutual informations among (I,S,T) elements using mutinformation function.
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mia <- mutinformation(Obs_4a_df)

mib <- mutinformation(Obs_4b_df)

mic <- mutinformation(Obs_4c_df)

mid <- mutinformation(Obs_4d_df)

# Require venneuler package for plotting

require(venneuler)

# Set up plot layout

par(mfrow = c(2, 2))

# Venn diagram for Figure 4a

venn.a <- venneuler(c("I" = mia[1, 1] - sum(mia[-1, 1]),

"S" = mia[3, 3] - sum(mia[-3, 3]),

"T" = mia[4, 4] - sum(mia[-4, 4]),

"I&S" = mia[1, 3],

"I&T" = mia[1, 4],

"S&T" = mia[3, 4]))

plot(venn.a)

# Venn diagram for Figure 4b

venn.b <- venneuler(c("I" = mib[1, 1] - sum(mib[-1, 1]),

"S" = mib[3, 3] - sum(mib[-3, 3]),

"T" = mib[4, 4] - sum(mib[-4, 4]),

"I&S" = mib[1, 3],

"I&T" = mib[1, 4],

"S&T" = mib[3, 4]))

plot(venn.b)

# Venn diagram for Figure 4c
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venn.c <- venneuler(c("I" = mic[1, 1] - sum(mic[-1, 1]),

"S" = mic[3, 3] - sum(mic[-3, 3]),

"T" = mic[4, 4] - sum(mic[-4, 4]),

"I&S" = mic[1, 3],

"I&T" = mic[1, 4],

"S&T" = mic[3, 4]))

plot(venn.c)

# Venn diagram for Figure 4d

venn.d <- venneuler(c("I" = mid[1, 1] - sum(mid[-1, 1]),

"S" = mid[3, 3] - sum(mid[-3, 3]),

"T" = mid[4, 4] - sum(mid[-4, 4]),

"I&S" = mid[1, 3],

"I&T" = mid[1, 4],

"S&T" = mid[3, 4]))

plot(venn.d)
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