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S1. A CONTINUUM NEUROMECHANICAL MODEL

S1.1. Mechanical model

We use Cohen and Ranner’s continuum mechanical model to capture the characteristic low

Reynolds number undulatory movement of C. elegans.1 In this model, the nematode’s body

is represented by a thin viscoelastic shell. Aside from the elasticity and viscosity of the

shell, the model worm is subject to internal pressure, external forces from the environment,

modelled using resistive force theory, and active muscle forcing.

The high internal pressure in C. elegans is represented as a line tension p along this midline

and is chosen such that the midline is inextensible (with length fixed at 1 mm from head

to tail). Internal pressure helps maintain the worm’s shape and relaxes the body back to a

straight configuration in the absence of muscle activation.

Bending due to active muscle force is represented by a torque acting on the midline of the

body. As we show below, this torque may be expressed as a preferred curvature β = β(u, t)

along the body midline; here, β(u, t) has units of curvature, u denotes the position along the

midline of the body (from 0 in the head to 1 in the tail) and t denotes time. Thus, β(u, t)

will vary along the body coordinate and in time. The preferred curvature is analogous to

a time-changing rest (or preferred) length in a spring, whose response is proportional to its

displacement as captured by Eq. (S2). We adopt a convention in which positive and negative

values of β correspond to dorsal and ventral excitation respectively. The body curvature,

κ = κ(u, t), is generated by the active moment β(u, t) which in turn follows the muscle

activation A(u, t).

Finally, the resistive environmental drag forces are decomposed into two forces acting in

directions normal and tangential to the body,

Fenv = Kνvνν +Kτvττ (S1)

with corresponding drag coefficients Kν ≥ Kτ acting along the normal, ν, and tangential,
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τ , directions, respectively; here, vν and vτ denote the normal and tangential components of

speed of a point along the body. The balance of forces is summarized as follows:

Fenv −
(pτ )u
|xu|

+
1

|xu|

(
EI2

|xu|
(κ− β)uν +

ηI2

|xu|
κtuν

)
u

= 0 , (S2)

where x denotes a coordinate of a point along the body (in the lab frame) and the subscripts

t and u denote partial derivatives with respect to t and u (along the midline of the worm),

respectively. Equation (S2) allows us to seamlessly translate between units of torque and

body curvature. The function I2 represents the second moment of area

I2(u) =
π

2

[(
R(u) +

rcuticle

2

)4

−
(
R(u)− rcuticle

2

)4
]
, (S3)

where R, the radius of the body, varies along the body and is defined as

R(u) = R̄
2
√

(ε+ u)(ε+ 1− u)

1 + 2ε
(S4)

for small ε (which sets the width of the body at the head and tail ends). Zero force and zero

torque are enforced at the boundaries, such that β = κ at both ends of the body.

Nondimensionalization

A detailed description of the non-dimensionalization is given by Cohen and Ranner (2017)1.

Briefly, the equations are recast in non-dimensional form and typical parameters are imposed

in a regime of interest. These include geometrical quantities (the length and second moment

of area of the worm), a time scale, estimated material properties of the body (the Young’s

modulus and internal viscosity) and external drag coefficients.

Estimates of the Young’s modulus of the worm vary from O(kPa) to O(100 MPa). For pur-

poses of non-dimensionalization, here we adopt a mid-range value of E = 5 MPa.1 (Note that

this value differs from our simulation default value of E = 100 kPa; see Table 1, and further

discussion below.) Using a time scale and drag coefficients matching the undulation period

of C. elegans in agar-like conditions and corresponding drag coefficients (Table S1), yields

a reduced model in which the internal viscosity is negligible. Hence, the non-dimensional

model equation can be expressed in terms of only two dimensionless parameters

K =
Kν

Kτ

, e =
I T0

L4

E

Kτ

, (S5)
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Description Label Value

Geometric constants

Body length L 1 mm

Cuticle width rcuticle 0.5µm

Maximum radius along body R̄ 40µm

Muscle constants

Muscle timescale τm 0.1 s

Curvature amplitude β0 10 mm−1

Nondimensionalization

Young’s modulus E 5 x 106 Pa

Undulation period (agar) T0 3.3 s

Tangential drag coefficient (agar) Kτ 3.2 kg m−1 s−1

Normal drag coefficient (agar) Kτ 128 kg m−1 s−1

Feed-forward control

Feed-forward wavelength λf 0.6 mm

Feed-forward period Tf 2 s

Proprioceptively-driven control

Proprioceptive threshold θ 3

Proprioceptive range δ 0.5

TABLE S1: Parameters used in model.

where I = 2πR̄3rcuticle, yielding the dimensionless model equation for the balance of forces

Kvνν + vττ −
(pτ )u
|xu|

+
e

|xu|

(
I2

|xu|
(κ− β)uν

)
u

= 0. (S6)

In this non-dimensional formulation, all variables are also non-dimensional (e.g., κ → κL).

For notational simplicity, we continue to use the same symbols for these non-dimensional

entities except where otherwise stated (or units given). The non-dimensional model is solved

using a finite element method with 128 mesh points.1 Its key advantages for our purposes

here are seamless integration with neural and muscular control, numerical stability and high

computational efficiency.
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S1.2. Neuromechanical coupling

Model muscles

Cohen and Ranner’s model1 uses instantaneous forcing β(u, t) to generate body bending.

In other words, that model lacks an explicit representation of muscles and neurons. Here,

we include a minimal muscle model, whose input can be viewed as a current input from

the nervous system and whose output is the muscle torque β(u, t), which acts directly on

the viscoelastic shell (since nematode body wall muscles are tethered to the cuticle of the

animal). Rather than discrete body wall muscles, our model uses a continuous muscle

forcing along the ventral and dorsal sides, approximating the effect of ventral and dorsal

muscles. Muscles respond to neural activation with a muscle time scale τm, and the combined

activation of ventral and dorsal muscles translates to an effective torque that acts on the

midline of the body, given here in dimensional form as

τm
dβ

dt
= −β + β0A , (S7)

where A = A(u) represents a neural activation or muscle input, β = β(u, t) is the torque

experienced by the midline, and β0 is the amplitude of the preferred curvature and dictates

the amplitude of undulations (or maximal curvature κ, see Eq. (S6)).

Central pattern generated control

Here, we consider a minimal model in which the action of this circuit on the muscles can

be captured by continuous unit amplitude oscillations with an imposed period, Tf , and

undulation wavelength, λf , propagating from head to tail. Thus, the input to the muscles

is given by travelling sine wave

A(u, t) = sin(2πuL/λf − 2πt/Tf ) , (S8)

given, again, in dimensional form. Our choice of this model is motivated precisely by its

simplicity, to serve as a minimal model of feed-forward (open loop) control and as a basis

for comparison with our own model of feedback-driven control and with future models of

neural control, whether driven by feed-forward or feedback control.
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Proprioceptively driven control

We assume proprioceptively generated control relies exclusively on feedback from the shape

of the body of the nematode. The C. elegans forward locomotion motor circuit consists of

command interneurons that innervate motor neurons along the ventral nerve cord. Ventral

motor neurons innervate ventral body wall muscles and dorsal motor neurons innervate

dorsal body wall muscles (Fig. 1a). B-type motor neurons are the primary excitatory motor

neurons implicated in forward locomotion.2 Here, we model B-type motor neurons as bistable

elements, following Boyle et al. (2012)3 and inspired by electrophysiological recordings of

bistable RMD head motor neurons.4 In our continuous representation of the body, the state

of ventral (VB) and dorsal (DB) motor neurons at a point u along the body is given by

V V(u), V D(u) ∈ {0, 1}, respectively.

In our simplified representation of the circuit, only B-type neurons are represented explicitly.

The activation of B-type motor neurons is determined by two components: (i) current

inputs from other neurons in the locomotion neural circuit and (ii) a dynamic proprioceptive

current. A tonic input from the AVB command interneurons, and VD to VB inhibition are

included implicitly. The former is treated as a constant and can therefore be absorbed into

the switching threshold θ. VD to VB inhibition is treated as a reset3 that ensures VB

and DB neurons are always in antiphase (when VB is on, DB is off and vice versa). For a

neuron at position u, the proprioceptive input current is typically modelled as the stretch

of one side of the body (ventral or dorsal) relative to a rest length. It is easy to show that

in our fixed radius geometry, this measure of stretch can be reformulated as a measure of

curvature, which allows us to use our representation of the midline of the body. In fact,

during forward locomotion the C. elegans undulation wavelength and amplitude typically

scale with body size (for example during development),5 suggesting that any sensing of

length changes along the body scale similarly (in other words measuring relative rather than

absolute length changes). Conveniently, the non-dimensional curvature κ exactly captures

such length-invariant deformation due to stretch along the body. Accordingly, here, the

proprioceptive input current Iκ(u) is given by the mean body curvature over a specified

proprioceptive range, represented as a fraction of the body length, ∆(u):

Iκ(u) =

∫ u+∆(u)

u
κ(u′)|xu(u′)| du′∫ u+∆(u)

u
|xu(u′)| du′

. (S9)
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We note that this is equivalent to having formulated the proprioceptive response in terms

of the dimensional curvature and having non-dimensionalized the result. The input current

represents the effective stretch of each side of the body arising in the (non-dimensional)

mechanical model. Here, we adopt a convention whereby a positive (negative) range corre-

sponds to a posterior (anterior) receptive field, and where positive curvatures κ, a positive

proprioceptive input current and a positive preferred curvature β all correspond to dorsal

bending, whereas negative values correspond to ventral bending. Anteriorly facing processes

are found in A-type motor neurons of the ventral nerve cord and have been implicated in

backward locomotion.2,6,7

When the proprioceptive input Iκ(u) exceeds the proprioceptive threshold θ (Table S1), the

dorsal neuron will switch off and the ventral one on. When the input falls below some

threshold (here, taken as −θ for symmetry) the dorsal neuron will switch on and the ventral

one off. We implicitly assume synchrony of DB and VD, and similarly of VB and DD (see

Fig. 1a). Neuronal state switching is then given by

If Iκ(u) > θ , then

V
D(u)→ 0

V V(u)→ 1 ;

If Iκ(u) < −θ , then

V
D(u)→ 1

V V(u)→ 0 .
(S10)

Here, the proprioceptive range ∆(u) is set to δ for u ∈ [0, 1− δ] (in the anterior of the body

when δ = 0.5 (Table S1)) and decreases linearly as 1 − u in the posterior u ∈ [1 − δ, 1],

i.e. ∆(u) = min(δ, 1 − u). The activation thresholds are set to effective (non-dimensional)

curvatures of ±θ = ±3. By imposing anti-phase activation, the state at position u along the

body reduces to the difference between the dorsal and ventral activation

A(u) = V D(u)− V V(u) = ±1.

This activation A(u) then feeds into Eq. (S7) to drive the muscles.

Model Code

The model code is publicly available and can be found at the following address:

https://bitbucket.org/leedswormlab/curve-worm-royal-society-paper
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S2. COMPUTING KINEMATIC PARAMETERS

For convenience, simulation inputs and outputs are converted to dimensional units, as ap-

propriate. All simulations were performed for 60 seconds using integration time steps of

0.3 ms for feed-forward control and 0.03 ms for proprioceptive control. The transients in

some simulations were negligible (<1 s) but others varied significantly with model param-

eters. In all kinematic analysis, we truncated the transient, thus limiting our analysis to

periodic activity.

Frequency: The period of undulations, T , was computed from curvature kymograms. For

a given point along the body, the period was defined as the mean time interval between zero

crossing of the body curvature κ(u, t) at u = 0.125 (from negative to positive values). In

coordinated locomotion, the period of undulation does not depend on the position along the

body. The frequency of undulations is given by f = 1/T .

Wavelength: In our proprioceptive model (as in experimental observations), the undula-

tion wavelength increases along the body (from head to tail). We defined wavelength as

the distance along the midline of the body spanning an entire cycle of body curvatures.8

This distance along the body is the physiologically meaningful entity and can therefore be

extracted from the postural dynamics of the worm. (The conventional wavelength is given

by the straight line connecting the corresponding two points along the body.) Note that

for sufficiently dilute (low viscosity) environments, the wavelength is longer than the length

of the body. We computed wavelength by calculating the gradient of the curvature κ(u, t)

as a function of body coordinate u and time t within a section of the body. Towards the

tip of the tail the value of the wavelength changes. This may be due to a combination of

boundary effects and decreasing proprioceptive range. We therefore exclude the tail and tip

of the head in our measure of wavelength which we define as

λ = T
∂κ/∂u

∂κ/∂t
(S11)

over the region u ∈ (0.1, 2/3). A small amount of filtering of the curvatures ensured that

the derivatives are well approximated using a finite difference. An average was taken across

u and time t using a histogram mode with logarithmically distributed bins.

Speed: Speed was computed by tracking the midpoint of the nematode’s body (u = 0.5)

over time, and performing a straight line fit over the midpoint trajectory to remove side-to-
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side displacement arising from the undulatory movement. The speed was then defined as

the distance travelled along the straight line over the corresponding time interval.

Thrust: To gain insight into the propulsive thrust, we considered the progress made per

undulation. Thrust was therefore defined as speed/frequency and normalized by the body

length to yield a dimensionless measure (corresponding to 1-slip in the notation of Gray and

Lissmann (1964)9).

Neuromechanical Phase Lag: To calculate the phase lag φ(u, t), we took the Hilbert

transform of the torque, β(u, t), and curvature, κ(u, t), separately using MATLAB’s inbuilt

hilbert function. Unwrapping the angles yielded monotonically increasing phases along the

body for each point in time, φβ(u, t) and φκ(u, t). The neuromechanical phase lag φ(u, t)

was defined as the time averaged difference φ(u, t) = φκ(u, t)− φβ(u, t). The corresponding

time lags were obtained by normalizing by the angular frequency, 2πf .

8



S3. SUPPLEMENTARY RESULTS

Supplementary Figure captions

Figure S1:

Simulations of proprioceptively driven control with anteriorly facing proprioceptive feed-

back. Simulation parameters as in Table S1 except for the proprioceptive range, set to

δ = −0.5 such that ∆(u) = max(−u, δ) and integration limits in Eq. (S9) updated accord-

ingly. (a) Backward locomotion in low K environment. (b) Backward locomotion in a high

K environment. Reversing the polarity of the proprioceptive current to polarize rather than

depolarize the neurons in response to stretch, or else to depolarize in response to contraction

rather than stretch reinstates forward locomotion.

Figure S2:

Undulation frequency, wavelength and speed, obtained from simulation results of proprio-

ceptively driven forward locomotion with default parameter values for the neural control,

in a variety of Newtonian media and with different body Young’s moduli. The results are

taken from Fig. 2 of the main paper and replotted here as a function of the dimensional

tangential drag coefficient. Frequency, wavelength and speed all increase with body stiffness

but fall with increasing fluid viscosity. The expected range of gait modulation depends on

material properties of the body.

Figure S3:

Extended simulation results of proprioceptively driven forward locomotion in eight differ-

ent viscoelastic fluids, subject to different proprioceptive thresholds. All other simulation

parameters are the default values (Table S1). Figure 3a in the main paper shows results

for four of the eight conditions shown here (a,b and f). During coordinated locomotion, the

frequency determines the speed indicating that the proprioceptive threshold effect on thrust

is negligible (c–e).

Figure S4:

Extended simulation results of proprioceptively driven forward locomotion in eight different
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viscoelastic fluids, subject to different proprioceptive ranges. All other simulation parame-

ters are the default values (Table S1). Figure 3b in the main paper shows results for four of

the eight conditions shown here (a,b and f). (a) Undulation frequency falls with increasing

proprioceptive range across all environments tested. (b) The sensitivity of the undulation

wavelength grows with increasing proprioceptive range. Here, considerable gait modulation

requires an effectively large proprioceptive range of 40-50% of the body. (c) Significant

thrust and (d) speed require an effectively non-local proprioceptive range. The most effi-

cient locomotion is obtained for a maximal thrust, which declines for long proprioceptive

ranges (>50% of the body), indicating that speed is not fully determined by the undulation

frequency (e).

Figure S5:

Neuromechanical phase and time lags for different control circuits. (a–b) Neuromechanical

time lags (as distinct from phase lags) under (a) feed-forward and (b) proprioceptive control,

corresponding to results from Fig. 4 from main paper. (c) Neuromechanical time lags and

(d) corresponding phase lags, obtained from simulations with a proprioceptive range of

δ = 0.2 and a range of Young’s moduli. The phase lag is now clamped for u ∈ [0, 0.8] before

increasing near the tail. The increase in lag is more substantial for lower values of Young’s

modulus. (e) Fixing the Young’s modulus at the default value (100 kPa) and varying the

proprioceptive range, δ. The phase clamping breaks down consistently around u = 1− δ.
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S3.1. Anterior proprioception leads to backward locomotion

(a) (b)

FIG. S1:
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S3.2. Proprioceptive feedback couples undulatory kinematics to

biomechanical parameters

FIG. S2:
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S3.3. The kinematics of forward locomotion depends on the proprioceptive

threshold

(a) (b)

(c) (d)

(e) (f)

FIG. S3:
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S3.4. The kinematics of forward locomotion depends on the effective

proprioceptive range

(a) (b)

(c) (d)

(e) (f)

FIG. S4:
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S3.5. Reducing proprioceptive range confirms anterior phase lag clamping

under feedback control

(a) (b)

(c) (d)

(e)

FIG. S5:
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