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S1 More Explanation of the Travelling Procedure

In this work, the game players are potential visitors who have a plan to visit a travel destina-
tion. Potential visitors will end up in two categories: those who take the trip and those who cancel
the trip (see path (1) in main text). Any individual of the home country of visitors may become
a potential visitor at any time. The number of potential visitors (or N1 as the ratio in the model,
see Table 1 in main text) is mainly dependent on the travelling pattern (or seasonality) of the
destination. A potential visitor may decide to travel (i.e., become a “visitor outside”) according
to his/her knowledge on the disease risk at the very moment the decision being made. Thus, there
are three cases regarding to the different travelling decisions.

• A potential visitor decides to travel and successfully completes the trip. Since the trip
is short (three days), we assume that the visitor does not change his/her travel decision.
Finally, s/he returns to his/her home population after the trip.

• A potential visitor decides to travel but fails to complete it due to travel restriction at the
destination. In this case, the visitor returns to his/her home population.

• A potential visitor voluntarily cancels the trip and stays at his/her home population.

Therefore, in any case, the decision making process of the proposed travelling game follows the
sequential game scheme (i.e., the decision is “renewable” for every participant in this game). We
note that local “travel restriction” only has its effects on these potential visitors who decide to
travel; and the potential visitors is mainly influenced by the travelling pattern to the destination.

S2 Individual Equilibrium and Group Optimum

S2.1 Individual Equilibrium

We assume that a proportion ε (0 < ε < 1) of potential visitors will take the trip with a
probability p (i.e., playing p strategy) and the rest of potential visitors (1 − ε) will take the trip
with probability q, where q 6= p. Then, the overall proportion of visitors (ρ̄) who will take the trip
among all game players is

ρ̄ = εp+ (1− ε)q. (S1)

Therefore, the payoff to individuals playing p-strategy and q-strategy are E(p, ρ̄) and E(q, ρ̄),
respectively. The payoff gain (or loss if negative) of an individual playing p strategy against q
strategy is the difference of two payoff functions,

∆E = E(p, ρ̄)− E(q, ρ̄) = (p− q) [r − αφ(ρ̄)] . (S2)

where the parameters have the same meaning as in the main text.
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Figure S1: Schematic diagram of Nash equilibria under three “existence” situations (panel (a) and
(b)) and numerical results of the relation between φ(ρ) and ρ (panel (c)). In order to have a clear
demonstration of three kinds of Nash equilibria, panel (a) and (b) show the trends of φ(ρ;P )
against ρ and P . Panel (c) shows the relation between scaled φ(ρ) and ρ. The scaled φ(ρ) =
1000 × φ(ρ). In panel (c), the transparently blue line are from 1,000 random samples with
parameter sets, and the black dotted line is the result with fixed parameter values. The parameters’
values and ranges can be found in Table 1.

Existence of Nash Equilibria The probability of a visitor becomes infected during the trip
(0 < φ(ρ) < 1) must increase strictly (which is in line with [?], as explained in Epidemic Model
section) when a proportion ρ of game players choose the travelling strategy (see Fig. S1). Hence,
when P is fixed, the minimum of φ(ρ) occurs at ρ = 0 and the maximum of φ(ρ) occurs at ρ = 1.
Here, we show the existence of the unique Nash equilibria by achieving ∆E > 0 in Eqn. (S2)
under three situations.

• If α · min{φ(ρ)} = αφ(ρ = 0) > r, αφ(ρ) > r for all 0 < ρ < 1, so for any 0 < ε < 1 of
Eqn. (S1), ∆E > 0 for any q 6= p if and only if p = 0 (such that p− q < 0 for all 0 < q < 1),
thus, p∗ = 0 is the unique Nash equilibrium.

• If α · max{φ(ρ)} = αφ(ρ = 1) 6 r, αφ(ρ) < r for all 0 < ρ < 1, so for any 0 < ε < 1 of
Eqn. (S1), ∆E > 0 for any q 6= p if and only if p = 1 (such that p− q > 0 for all 0 < q < 1),
thus, p∗ = 1 is the unique Nash equilibrium.

• If α · max{φ(ρ)} = αφ(ρ = 1) > r > αφ(ρ = 0) = α · min{φ(ρ)}, there exist one and only
one p∗ such that αφ(ρ = p∗) = r. For all q < p, we have ρ̄ < p (according to Eqn. (S1)) for
any 0 < ε < 1 and, similarly, for all q > p, we have ρ̄ > p for any 0 < ε < 1. Hence, for
αφ(ρ = 1) > r > αφ(ρ = 0), we always have ∆E > 0 for all q 6= p if and only if p = p∗, so
p∗ is the unique Nash equilibrium such that αφ(p∗) = r.

These different situations of the relationship between αφ(ρ) and r are due to different values
of the pre-existing immunity level (i.e., P , Fig. S1) and different values of parameters (Table 1).

Convergent Stability Follow the previous work [3], let p be closer to p∗ than q (i.e., the
unique Nash equilibrium of Eqn. (S2)), which means q < p 6 p∗ or q > p > p∗ (note that p is not
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necessarily equal to p∗). Given φ(ρ) increases with respect to ρ, if q < p 6 p∗, (r − αφ(ρ̄)) > 0 for
all ε in Eqn. (S1), we have ∆E > 0. Similarly, we can also have ∆E > 0 if q > p > p∗ as desired.
Therefore, the Nash equilibria in all of the three scenarios are convergently stable.

S2.2 Group Optimum
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Figure S2: The optimal proportion of travelling-players becoming visitors (i.e., ρ∗ corresponding
to Eqn. (S4)) during epidemic (i.e., α = 1). Panel (a)-(c) corresponds to R0 = 1.0, 2.5 and 10.0
respectively. Blue lines are Υ(ρ) in Eqn. (S4) with respect to different values of r and red dots
are the minima (when ρ = ρ∗) of Υ(ρ), of which ρ ∈ [0, 1]. The values of r are shown on each blue
line. The range of R0 and values of other parameters are on Table 1.

For all potential visitors, we aim to minimize the overall cost (negative payoff) of all players,
which also appears to be the goal of governmental control. We further ignore the possibility that
infected visitors bring the disease back to their home population. We can express the expected
cost in term of ρ (i.e., the overall proportion of all players who choose to travel),

Υ(ρ) = N1 · [ρα · φ(ρ) · r1 + (1− ρ)r0] . (S3)

Here, N1 is the ratio of total number of players to the total local population capacity (i.e., sum of
local visitors capacity and number of population). The other terms have the same meaning as in
Eqn. (S2). We further scale Υ(ρ) by eliminating N1 (because N1 can be fixed as a constant) and
one risk term (replacing r0 and r1 by r = r0

r1
[2, 6]. Thus, the (scaled) cost of potential visitors is

Υ(ρ) = ρα · φ(ρ) + (1− ρ)r, (S4)

where all terms have the same meaning as in Eqn. (S2). The optimal travelling proportion is
the optimal ratio of successful visitors over all game players, which is denoted by ρ∗. ρ∗ can be
obtained by minimizing Υ(ρ) (see Fig S2 as numerical examples).
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S3 Simplification of the Epidemic Model: Elimination of

R and R1

Based on the framework of the standard SIR compartmental model (see “Epidemic Model”
section in the main text), we write the original epidemic model as:

S ′ = µ · (1−K1 − S)− βS · (I + I1),

S ′1 = fρ ·
(

1− S1 + I1 +R1

K1

)
− βS1 · (I + I1)− νS1,

I ′ = βS · (I + I1)− (γ + µ)I,

I ′1 = βS1 · (I + I1)− (γ + ν)I1,

R′ = γI − µR,
R′1 = γI1 − νR1.

(S5)

Here, fρ = f(ρ) = ρλN1 represents the rate of incoming visitors. K1 is the ratio of maximum
capacity of visitors to the total population capacity. K1 controls the upper bound of the magnitude
of visitors in the model system (thus, generally, K1 is fixed) S6.2. N1 has the same meaning as in
Table 1 and Eqn. (S3). N1 is the ratio of total number of potential visitors (i.e., travelling-players)
to the total population capacity (i.e., the sum of maximum visitors capacity and the size of local
population, see Table 1, (S + I + R + K1) in model (S5)) For simplicity, we fix N1 in this work.
Model parameters are summarized in Table 1 in the main text.

Most visitors stay inside border (i.e., in the destination) for a considerably short period (three
days, ν−1 in Table 1 and S6.3). Since (S + I +R) +K1 ≡ 1 (i.e., the total population capacity, is
scaled to unity) and S1 + I1 +R1 6 K1 < 1, we have (S + I +R) + (S1 + I1 +R1) 6 1.

Under the quasi-steady-state assumption, which is widely adopted in within-host modelling

studies [7, 5], we replace the term S1+I1+R1

K1
(in model (S5)) by

S1+(1+ γ
ν )I1

K1
(by forcing R′1 = 0) in

order to eliminate equation of R1. This approximation can be interpreted as that all R1 come
from I1 and only γ

γ+ν
of I1 could transit to R1 at any time (other part of I1 simply leaving the

system at rate ν). Thus, R1 6
γ

γ+ν
I1 6

γ
ν
I1 (both γ and ν are positive), and then, S1 + I1 +R1 6

S1+
(
1 + γ

ν

)
I1. Since infected (I1) visitors will quickly joinR1 class at the rate γ and the proportion

of recovered visitors are relatively small, term S1 + I1 +R1 is very close to S1 +
(
1 + γ

ν

)
I1. Note

that γ
ν
I1 is simply the upper bound of R1, and, after all, the effects of both I1 and R1 are little

(compared with S1) regarding to the visitors input.
After eliminating R′ and R′1, we reformulate the epidemic model as,

S ′ = µ · (1−K1 − S)− βS · (I + I1),

I ′ = βS · (I + I1)− (γ + µ)I,

S ′1 = fρ ·

[
1−

S1 +
(
1 + γ

ν

)
I1

K1

]
− βS1 · (I + I1)− νS1,

I ′1 = βS1 · (I + I1)− (γ + ν)I1.

This version is used in the main text.
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For mathematical convenience, we fix (S + I + R) + K1 ≡ 1 (i.e., the population threshold,
or the total population capacity, is scaled to unity, 1). We also let S1 + (1 + γ/ν)I1 6 K1, thus,
S1 + I1 + R1 6 K1 is guaranteed. Therefore, we have (S + I + R) + (S1 + I1 + R1) < 1 in our
complete model (see S3).

S4 Some Numerical Examples

The epidemics could be amplified by the uncontrolled visitor inflow, even when the basic
reproduction number is low. Fig. S3(a) shows an epidemic becoming out of control withR0 declines
(from 2.5 to 2.4) while the incoming visitor restriction fails (red line). The disease outbreaks can
be controlled if the incoming visitors are restricted (i.e., by holding ρ = 0.1 unchange, see the
green line). Since ρ∗ is sensitive in a narrow range of R0 and r (see section “Results of Individual
Equilibrium and Travelling Optimum” in main text), ρ∗ could have very large change (e.g., from
0.1 to 0.99) with slight change on R0 (e.g., from 2.5 to 2.4 in Fig. S3(a)). The large variation in
ρ∗ could lead to the discrepancy between ρ∗ and p∗. The decline of disease risk (R0) could avoid
this discrepancy (by achieving p∗ = ρ∗ = 1). The increase of disease risk (R0) might also avoid
this discrepancy (by achieving p∗ = ρ∗ = 0).

When the risk of disease (in term of R0) is higher than the perceived risk (i.e., the perceived
risk is low), the local government is suggested to restrict visitor entrance. Otherwise, the actual
proportion of the incoming visitor is likely to be greater than the optimal level (ρ∗). Fig. S3(b)
shows the epidemic becoming out of control when R0 slightly rises and incoming visitors are not
controlled (green line). The disease outbreak can be controlled by visitors entrance restriction
(red and purple lines).

Fig. S3(c) shows the similar trend as the early stage of SARS epidemic (in Jan - Feb, 2003).
The rapid increasing could be mainly due to the increased visitors during Chinese new year (see
Fig. 2(a) of Ref. [10]). Namely the increase of visitors could lead to a disease outbreak.

S5 Sensitivity Analysis of Payoffs

Partial rank correlation coefficient (PRCC) analysis is deployed to assess the dependence
of the model results on the parameters [7, 8, 9]. The ranges of model parameters used for the
sensitivity analysis are summarized in Table 1 in the main text.

Fig. S4 shows the PRCCs between model parameters and individual payoff (E, see Eqn. (5)),
and population risk level (Υ, Table 1 and S2.2) respectively. The ranges of model parameters are
given in Table 1. Since “payoff” (the term in Fig. S4(a)) is the defined as the opposite number of
“risk level” (the term in Fig. S4(b)), some model parameters have symmetric PRCC result with
respect to level “0” (see the vertical grey dashed line in Fig. S4) on both panels. The PRCCs
show that the results are most sensitive to the group of the relative risk (r), the basic reproduction
number (R0), and the rate at which individuals leave the destination country (ν). Hence, these
parameters should be the focus of data collection efforts during outbreaks when a travel policy
must be decided. In Fig. S4(b), the basic reproduction number (R0) and relative risk (r) is
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Figure S3: The simulation results of local infections (I) of epidemic model (panel (a) and (b), see Eqns. (S3))

and the SARS epidemic of China in 2002-03 (panel (c)). The baseline scenario contains that initial states are set as

[S(0), I(0), S1(0), I1(0)] =
[

1
R0
, 1× 10−4,

(
K1 − 5× 10−6

)
, 5× 10−6

]
; with R0 = 2.5 and ρ = 0.1 for panel (a) and

(c), and R0 = 1.1 and ρ = 0.99 for panel (b). Values of other parameters are on Table 1. In panel (a), the blue

line is the simulation results under baseline scenario of panel (a); the green line is of basic reproduction number

(R0) decreasing to 2.4 since the 201-st day (vertical green dashed line); based on the change of green line, the red

line is of travelling proportion (ρ) increasing to 0.99 since the 301-st day (vertical red dashed line). In panel (b),

the blue line is the simulation results under baseline scenario of panel (b); the green line is of basic reproduction

number (R0) increasing to 1.2 since the 701-st day (vertical green dashed line); based on the change of green line,

the red line is of travelling proportion (ρ) decreasing to 0.50 since the 751-st day (vertical red dashed line); based

on the change of red line, the purple line is of travelling proportion (ρ) continually decreasing to 0.10 since the

801-st day (vertical purple dashed line). In panel (c), the blue line is the simulation results under baseline scenario

of panel (c); the green line is of travelling proportion (ρ) increasing to 0.99 since the 301-st day (vertical green

dashed line).

strongly positively related to the population risk level (Υ), and the visitors leaving rate (ν) is
negatively related to Υ. Opposite results can be seen in Fig. S4(a) for the individual payoff.

S6 Interpretation and Value of Some Model Parameters

S6.1 Rate of visitors moving from outside status to inside status λ

The value of the mean period of a traveler stay outside border (λ−1) can be estimated by
referring to the “deadline” of cancellation of hotel room, flight or even car-rent for travelling
usage. For example, according to cancellation policies of Airbnb (https://www.airbnb.com/home/
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Figure S4: Sensitivity analysis results of (PRCCs) between model parameters and individual payoff
(panel (a), see Eqn. (5)), and population risk level (Υ, in panel (b), see Table 1). The black dots
are the estimated correlations and the bars represent 95% C.I.s. The ranges of model parameters
are summarized on Table 1.

cancellation_policies), the waiver of refund charges can be considered for room-cancellation at
least 1 day (with “flexible” policy) or 5 days (with “moderate” policy) in advance, thus we can
make a rough estimation that λ−1 ≈ 1

2
× (1+5) = 3 days. According to Hong Kong Airline refund

policies (http://www.hongkongairlines.com/en_HK/flight/refund), λ−1 > 2 days.

S6.2 Visitor capacity at destination K1

According to the monthly travelling statistics (http://partnernet.hktb.com/en/research_
statistics/latest_statistics/index.html) and travelling summary sheet (http://partnernet.
hktb.com/en/research_statistics/index.html) from PartnerNet—Hong Kong tourism website
for travel trade partners, there were approximate 58,000,000 travelers in Hong Kong of 2015
or 2016, and the local hotel room occupancy is roughly 87% over the whole period of time.
Provided the information in S6.3, the local tavelling capacity of Hong Kong can be estimated as
NK1 = (58000000/87%)×3

365
≈ 550000, hereN denotes the number of total population capacity in Hong

Kong (i.e., the sumation of upper bound of the number of travelers and local population, N =
NK1+N·(S+I+R)). Given the popualtion statistics from World Bank (https://data.worldbank.
org/indicator/SP.POP.TOTL?locations=HK), 7,300,000 is the number of local population in Hong
Kong in 2015-16, thus N = NK1 + N · (S + I + R) = 550000 + 7300000 = 7850000, and
K1 = 550000

7850000
≈ 7.0%.

S6.3 Rate of visitors leaving destination ν

Referring to immigration department of the government of Hong Kong (http://www.immd.
gov.hk/eng/services/visas/visit-transit/visit-visa-entry-permit.html), Chinese citizens
can stay in Hong Kong for at maximal 7 days, and the majority of non-Chinese citizens can stay
for roughly at maximal 15 days. According to the monthly travelling statistics from PartnerNet -
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Hong Kong tourism website for travel trade partners (http://partnernet.hktb.com/en/research_
statistics/latest_statistics/index.html), averagely, 75% of travelers are from mainland China
and 25% are from other regions; for Chinese travelers, 50% of them are overnight passengers (ex-
pected to stay for 1

2
× (7 + 1) = 4 days) and 50% them are one day visitors (expected to stay

for 1
2
× (0 + 1) = 0.5 day); for non-Chinese travelers, 66.67% of them are overnight passengers

(expected to stay for 1
2
× (15 + 1) = 8 days) and 33.33% them are one day visitors (expected to

stay for 1
2
× (0 + 1) = 0.5 day). Therefore, on average, one random-selected traveler would be

expected to stay in Hong Kong for ν−1 = 75%×(50%×4+50%×0.5)+25%×(2
3
×8+ 1

3
×0.5) ≈ 3

days (thus, ν−1 = 3 days).

S6.4 Relative risk r

The range of relative risk (r) can be approximated by simply checking the claim settle-
ment odds of the travel insurance corresponding to the target place. For an example, according to
travel insurance premium and coverage websites of Hang Seng Bank (https://bank.hangseng.com/
1/2/personal/insurance/travel-leisure/travel-insurance/travel-premium and https://bank.

hangseng.com/1/2/personal/insurance/travel-leisure/travel-insurance/travel-coverage), r ≈
10−3.

S7 Further Discussion of Model Parameters

Relative risk r = r0
r1

(see Eqn. (S2) and Table 1) is the ratio of the “non-travelling” payoff
(E0 = −r0, see main text) to the upper bound of the “travelling” payoff (i.e., E1 = −r1, see
main text). The range of r could be obtain by referring to the claim-settlement-odds of the travel
insurance with regard to the travelling destination (normally, r ≈ 10−3, see S6.4).

Number of visitors N1 is the ratio of total number of potential visitors (i.e., game players)
to the total population capacity. Provided total population capacity can be fixed in short term,
the magnitude of N1 is proportional to the number of potential visitors. We fix N1 in this work.
However, the number of potential visitors could be affected by seasonal factors (such as weather,
school terms, holidays, etc.) and economic and politic factors (such as traffic expenditures, hotel
fees, travelling policies [1], etc.), thus N1 could be time-dependent in reality.

Agreement and conflict between ρ and p In Eqns. (S5) (and the epidemic model in the
main text), fρ

λ
= ρN1 is the proportion of visitors (outside border and about to be inside border

shortly) to the total population capacity. ρ (see Table 1) is the proportion of potential visitors
eventually becoming visitors correspond to the optimal travelling strategy selection. Therefore,
we have ρ = p∗ (where p∗ is individual’s optimal travelling probability) under normal scenario
(i.e., no serious disease outbreak, of which no restriction on travelling entry). However, during a
serious disease outbreak, the local government will consider restricting travelling entry (in order to
lower the number of visitors inside border) according to population’s optimal travelling proportion
(i.e., ρ∗), and this would change ρ = min{p∗, ρ∗}. Numerical examples of local governmental
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intervention on travelling entry (i.e., ρ) are discussed in section S4. Note that, under governmental
intervention scenario, ρ should only equal to ρ∗ if ρ∗ < p∗ (otherwise ρ∗ > p∗, ρ = p∗ is equivalent
to normal scenario).

Period of visitors staying outside the border λ−1 is defined as the mean period for a visitor
used to get inside the border (see Table 1). We stepwise the “visiting” population as in Path (1)
in main text. The λ−1 is the mean period for a visitor evolving from a “visitor outside” border to
a “visitor inside” border. Note that a “potential visitor” can only become a “visitor outside” if he
has finished his final travelling decision (see S1). The knowledge of the range of λ−1 can be learnt
by referring to the “deadline” of withdrawal of various travelling “services” (e.g., hotel, flight,
etc., see S6.1). Therefore, the speed of health information spread could be related to λ−1 because
that the updating of relevant information can “renew” individual’s final decision (i.e., re-choose
strategy). Therefore, higher speed of information spread is corresponding to lower value of λ−1.
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Figure S5: The relations among r, λ and ∆ρ (see main text) during epidemic (i.e., α = 1) with
R0 = 1.0, 2.5, 5.0, 10.0 for panel (a)-(d) respectively. The values of r and λ are in “log10” form.
The color code of the difference of individual and population strategy, ∆ρ, is shown on the color
key. The white area (in each panel) represents ∆ρ = 0 under two situations that ρ∗ = p∗ = 0 or
1. The values of other parameters are on Table 1.

Fig. S5 shows the relations among relative risk (r), rate of visitors pass border (λ) and ∆ρ
during an epidemic. When λ increases, the discrepancy (∆ρ) of individual (p∗) and group optimum
(ρ∗) appears under a wider range of relative risk (r). The discrepancy (∆ρ) shifts leftwards (the
direction r increases) asR0 increasing. Particularly, p∗ and ρ∗ meet agreement (i.e., no discrepancy
as ρ∗ = p∗ = 1) when R0 = 1.0 (which means disease cannot spread).
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S8 Pre-existing immunity among visitors

For the model in the main text, we assume that all visitors are susceptible when entering the
travel destination. In reality, this is not true. Pre-existing immunity of visitors could exist (e.g.,
the health authority of the visitors’ home could recommend vaccination for visitors planning to go
to a certain region where an epidemic is ongoing). The immunity level of the visitor population
is dependent on a number of factors, including previous outbreaks, vaccination program policy
and coverage, and the infection or vaccination history of the visitors, and may be estimated if the
information is available. Thus, we denote

• PT as the immunity level of the visitor population of a country;

• PO as the immunity level of the rest of the population of the home countries of the visitors;

• PD (i.e., term P in main text) as the immunity level of the local population of travel desti-
nation.

Then, the assumption PD = PT or PD = PO, i.e., the immunity levels of local and origin
populations are uniform, is unnecessary and can be relaxed. Moreover, the assumption PT = PO

can also be relaxed. In reality, PT > PO could be common because (i) health authority of the
visitors’ home could recommend vaccination for visitors planning to go to an epidemic region; and
(ii) vaccinated visitors are more likely to travel to an epidemic region.

After including PT, the revised epidemic model becomes:

S ′ = µ · (1−K1 − S)− βS · (I + I1),

S ′1 = (1− PT)fρ ·
[
1− S1 + I1 +R1

(1− PT)K1

]
− βS1 · (I + I1)− νS1,

I ′ = βS · (I + I1)− (γ + µ)I,

I ′1 = βS1 · (I + I1)− (γ + ν)I1,

R′ = γI − µR,
R′1 = γI1 − νR1,

with all the terms remaining unchanged, except for inclusion of (1−PT) in (1−PT)fρ·
[
1− S1+I1+R1

(1−PT)K1

]
.

We note that we could include one more equation,

X ′1 = PTfρ ·
[
1− S1 + I1 +R1 +X1

(1− PT)K1

]
− νX1,

where the additional state X1 denotes visitors being protected against the disease, and the term
S1+I1+R1

(1−PT)K1
(in the revised model) should originally be written as S1+I1+R1+X1

K1
(the same as in

Eqn. X ′1). Since the magnitudes of both I1 and R1 are relatively small with respect to S1 and X1,
we ignore the effects of I1 and R1 on the incoming visitors rate. Thus we have

S ′1 ≈ (1− PT)fρ ·
[
1− S1 + I1 +R1 +X1

K1

]
− νS1.
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We can easily see that PT of fρ joins in X1, (1−PT) of fρ joins in S1, and the leaving rates of X1

and S1 are the same as ν. To eliminate term X1, we have X1 ≈ PTS1

(1−PT )
; therefore,

S1 + I1 +R1 +X1

K1

≈ S1 + I1 +R1

(1− PT )K1

,

as shown in the above revised model.
The term (1 − PT) can be interpreted to mean that the protected visitors (PT) are directly

removed from the system (not by joining R1, but by being “completely” removed from the model
system), and the effect on the visitor input rate is partly reflected by “reducing” the local visitor
capacity (i.e., replacing K1 by (1−PT)K1). In this work, PT is fixed to 0. Then, a new simplified
model can be derived (from the revised model) by following the same method in S3 (by eliminating
R and R1). Since we regard PT as a fixed nonzero constant (i.e., PT 6= 0) during a short time
period, and mathematically speaking, the effect of PT can be transformed into a reduction of the
magnitudes of fρ and K1 [11], the main results in this work will hold for the revised epidemic
model.

S9 Risk of visitors bringing the disease back to their home

country

For the analysis in main text, for simplicity, we assume that visitors do not bring diseases back
to their home country. This assumption is clearly overly optimistic. To amend this shortcoming,
we may introduce one additional probabilistic factor of the risk level and obtain an improved
travelling risk function

Υ = Υ(ρ, π) = N1 ·
[
ρ · αφ(ρ) · (1 + π · %

r1
) · r1 + (1− ρ)r0

]
,

where π is the average probability that the disease is brought back to the home country of a
traveller, and % is the average payoff of the disease spreading in a randomly selected home country.

Generally, we note that % > r1, since the consequences of a disease spreading in a region are
presumed to be more serious than the consequences of a single individual being infected from a
utilitarian point of view. We fix the ratio of %

r1
and use a similar idea as r = r0

r1
. We view (1+π · %

r1
)

as a scaler and assign a value to π. Thus the results of our original framework still hold, namely,
the epidemic risk level of the travelling population, as listed in Table 1 in main text is a simplified
version when π = 0.
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