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Supplementary text S2

Stochastic block model for rich cores in single-layer networks

Suppose we have N nodes and we want to construct a single-layer network from which
we can identify a partition into two sets: a core of size Nc < N and a periphery of size
Np = N −Nc. Here we test the performance of the single-layer algorithm to detect rich
cores [1] on a simple stochastic block model.

Let us consider N nodes from which Nc drawn at random are chosen to be part
of the network core, whereas the remaining Np are part of the periphery. A network
with core-periphery structure is such that its adjacency matrix can be decomposed into
four different blocks: a dense diagonal block encoding information on core-core links,
a sparser diagonal block describing links among peripheral nodes, and two off-diagonal
blocks encoding core-periphery edges.

In our block model, we connect two nodes with probability ρ1 if they both belong to
the core, with probability ρ2 if one of them belongs to the core and one to the periphery,
and with probability ρ3 if they both belong to the periphery, ρ1 ≥ ρ2 ≥ ρ3. Given a
stochastic realization of the block model, we can extract the rich core of the network
and compare it with the ground-truth, i.e. the set of nodes originally labeled as core
nodes. In particular, we can test the accuracy of the algorithm for different choice of the
parameters ρ1, ρ2 and ρ3.

Given the three probabilities, the expected total number of edges connecting two core
nodes is Kcc = ρ1[(Nc − 1) ∗Nc/2], the expected total number of edges connecting two
peripheral nodes is Kpp = ρ3[(N−Nc−1)∗(N−Nc)/2], and the expected total number of
edges connecting a node in the core and a node in the periphery Kcp = ρ2[Nc ∗(N−Nc)].
The total number of links is K = Kcc +Kcp +Kpp.

In the case ρ1 = ρ2 = ρ3 = ρ the nodes are statistically indistinguishable from a
structural point of view, the network lacks a core-periphery structure and specifying the
value of ρ simply sets the expected average degree of the network 〈k〉 = Nρ. For instance,
for N = 250 and ρ = 0.04 we obtain 〈k〉 = 10 and K = 1250. Of the different blocks of
the adjacency matrix, the exact value of the density of the block encoding links between
core and periphery nodes does not play a significant role [2]. For such a reason here we
set ρ2 = 0.04, and study the core-periphery structure of the network as a function of
ρ1, with ρ1 > ρ2. The higher the value of ρ1, the stronger the core-periphery structure
of the system. In order to control for the density of the network, as we increases ρ1 we
have to opportunely decrease the value of ρ3. The average degree 〈k〉 can be kept fixed
by setting

ρ3 =
2

(Np) ∗ (Np− 1)

(
K −Kcc −Kcp

)
. (1)

In our case with N = 250 and 〈k〉 = 10, we have K = 1250 whereas Kcc and Kcp

are set once we fix the core size Nc and the value of ρ1. In Fig. 1 we show the average
Jaccard index J computed for the ground-truth partition and the partition extracted
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by the algorithm on the stochastic realizations of the network as a function of different
values of ρ1 for different core size.

As shown, J increases quickly until ρ1 = 0.2 and only mildly after this point. This
indicates that ρ1 = 0.2, corresponding to a value of ρ3 = 0.03, can be considered as
the smallest density of the core-core block at which the core-periphery structure of the
network is sufficiently well-defined. For this reason, in the stochastic block model for
multiplex networks with different values of core similarity Sc described in Fig. ?? of the
main text, where we have N = 250 and Nc = 50 we set ρ1 = 0.2.

Given the set of parameters ρ1, ρ2 and ρ3 we can also compute the average degree
〈kc〉 of core nodes

〈kc〉 = ρ1(Nc − 1) + ρ2(Np), (2)

the average degree 〈kp〉 of the peripheral nodes

〈kp〉 = ρ3(Np − 1) + ρ2(Nc). (3)

so that we have

〈k〉 =
Nc〈kc〉+Np〈kp〉

N
. (4)

In Fig. 2 we show the average Jaccard index J computed for the ground-truth partition
and the partition extracted by the algorithm as a function of 〈kc〉/〈kp〉. The Jaccard index
J is defined as

J =
I
[αβ]
c

N
[α]
c +N

[β]
c − I [αβ]c

, (5)

where N
[α]
c is the number of core nodes at layer α, N

[β]
c is the number of core nodes at

layer β and I
[αβ]
c is the number of nodes that are part of the core at both layers α and

β.
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Figure 1: Jaccard index J for the groundtruth core-periphery partition and the partition obtained by
the algorithm on realizations of the stochastic block model as a function of ρ1 and for different core sizes
Nc.
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Figure 2: Jaccard index J for the ground-truth core-periphery partition and the partition obtained by
the algorithm on realizations of the stochastic block model as a function of 〈kc〉/〈kp〉 and for different
core sizes Nc.
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