Battiston et al, Multiplex core-periphery organization of the human connectome Journal of Royal Society Interface

Supplementary text S2

Stochastic block model for rich cores in single-layer networks

Suppose we have N nodes and we want to construct a single-layer network from which we can identify a partition into two sets: a core of size $N_{c}<N$ and a periphery of size $N p=N-N_{c}$. Here we test the performance of the single-layer algorithm to detect rich cores [1 on a simple stochastic block model.

Let us consider N nodes from which N_{c} drawn at random are chosen to be part of the network core, whereas the remaining N_{p} are part of the periphery. A network with core-periphery structure is such that its adjacency matrix can be decomposed into four different blocks: a dense diagonal block encoding information on core-core links, a sparser diagonal block describing links among peripheral nodes, and two off-diagonal blocks encoding core-periphery edges.

In our block model, we connect two nodes with probability ρ_{1} if they both belong to the core, with probability ρ_{2} if one of them belongs to the core and one to the periphery, and with probability ρ_{3} if they both belong to the periphery, $\rho_{1} \geq \rho_{2} \geq \rho_{3}$. Given a stochastic realization of the block model, we can extract the rich core of the network and compare it with the ground-truth, i.e. the set of nodes originally labeled as core nodes. In particular, we can test the accuracy of the algorithm for different choice of the parameters ρ_{1}, ρ_{2} and ρ_{3}.

Given the three probabilities, the expected total number of edges connecting two core nodes is $K_{c c}=\rho_{1}\left[\left(N_{c}-1\right) * N_{c} / 2\right]$, the expected total number of edges connecting two peripheral nodes is $K_{p p}=\rho_{3}\left[\left(N-N_{c}-1\right) *\left(N-N_{c}\right) / 2\right]$, and the expected total number of edges connecting a node in the core and a node in the periphery $K_{c p}=\rho_{2}\left[N_{c} *\left(N-N_{c}\right)\right]$. The total number of links is $K=K_{c c}+K_{c p}+K_{p p}$.

In the case $\rho_{1}=\rho_{2}=\rho_{3}=\rho$ the nodes are statistically indistinguishable from a structural point of view, the network lacks a core-periphery structure and specifying the value of ρ simply sets the expected average degree of the network $\langle k\rangle=N \rho$. For instance, for $N=250$ and $\rho=0.04$ we obtain $\langle k\rangle=10$ and $K=1250$. Of the different blocks of the adjacency matrix, the exact value of the density of the block encoding links between core and periphery nodes does not play a significant role 2]. For such a reason here we set $\rho_{2}=0.04$, and study the core-periphery structure of the network as a function of ρ_{1}, with $\rho_{1}>\rho_{2}$. The higher the value of ρ_{1}, the stronger the core-periphery structure of the system. In order to control for the density of the network, as we increases ρ_{1} we have to opportunely decrease the value of ρ_{3}. The average degree $\langle k\rangle$ can be kept fixed by setting

$$
\begin{equation*}
\rho_{3}=\frac{2}{(N p) *(N p-1)}\left(K-K_{c c}-K_{c p}\right) . \tag{1}
\end{equation*}
$$

In our case with $N=250$ and $\langle k\rangle=10$, we have $K=1250$ whereas $K_{c c}$ and $K_{c p}$ are set once we fix the core size N_{c} and the value of ρ_{1}. In Fig. 1 we show the average Jaccard index J computed for the ground-truth partition and the partition extracted
by the algorithm on the stochastic realizations of the network as a function of different values of ρ_{1} for different core size.

As shown, J increases quickly until $\rho_{1}=0.2$ and only mildly after this point. This indicates that $\rho_{1}=0.2$, corresponding to a value of $\rho_{3}=0.03$, can be considered as the smallest density of the core-core block at which the core-periphery structure of the network is sufficiently well-defined. For this reason, in the stochastic block model for multiplex networks with different values of core similarity S_{c} described in Fig. ?? of the main text, where we have $N=250$ and $N_{c}=50$ we set $\rho_{1}=0.2$.

Given the set of parameters ρ_{1}, ρ_{2} and ρ_{3} we can also compute the average degree $\left\langle k_{c}\right\rangle$ of core nodes

$$
\begin{equation*}
\left\langle k_{c}\right\rangle=\rho_{1}\left(N_{c}-1\right)+\rho_{2}\left(N_{p}\right), \tag{2}
\end{equation*}
$$

the average degree $\left\langle k_{p}\right\rangle$ of the peripheral nodes

$$
\begin{equation*}
\left\langle k_{p}\right\rangle=\rho_{3}\left(N_{p}-1\right)+\rho_{2}\left(N_{c}\right) . \tag{3}
\end{equation*}
$$

so that we have

$$
\begin{equation*}
\langle k\rangle=\frac{N_{c}\left\langle k_{c}\right\rangle+N_{p}\left\langle k_{p}\right\rangle}{N} . \tag{4}
\end{equation*}
$$

In Fig. 2 we show the average Jaccard index J computed for the ground-truth partition and the partition extracted by the algorithm as a function of $\left\langle k_{c}\right\rangle /\left\langle k_{p}\right\rangle$. The Jaccard index J is defined as

$$
\begin{equation*}
J=\frac{I_{c}^{[\alpha \beta]}}{N_{c}^{[\alpha]}+N_{c}^{[\beta]}-I_{c}^{[\alpha \beta]}}, \tag{5}
\end{equation*}
$$

where $N_{c}^{[\alpha]}$ is the number of core nodes at layer $\alpha, N_{c}^{[\beta]}$ is the number of core nodes at layer β and $I_{c}^{[\alpha \beta]}$ is the number of nodes that are part of the core at both layers α and β.

Figure 1: Jaccard index J for the groundtruth core-periphery partition and the partition obtained by the algorithm on realizations of the stochastic block model as a function of ρ_{1} and for different core sizes N_{c}.

Figure 2: Jaccard index J for the ground-truth core-periphery partition and the partition obtained by the algorithm on realizations of the stochastic block model as a function of $\left\langle k_{c}\right\rangle /\left\langle k_{p}\right\rangle$ and for different core sizes N_{c}.

References

[1] A. Ma, R. J. Mondragn, Rich-Cores in Networks, PLOS ONE 10 (3) (2015) e0119678. doi:10.1371/journal.pone. 0119678 .
[2] S. P. Borgatti, M. G. Everett, Models of core/periphery structures Social Networks 21 (4) (2000) 375-395. doi:10.1016/S0378-8733(99)00019-2

