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S1. A CONTINUUM NEUROMECHANICAL MODEL

S1.1. Mechanical model

We use Cohen and Ranner’s continuum mechanical model to capture the characteristic low

Reynolds number undulatory movement of C. elegans.1 In this model, the nematode’s body

is represented by a thin viscoelastic shell. Aside from the elasticity and viscosity of the

shell, the model worm is subject to internal pressure, external forces from the environment,

modelled using resistive force theory, and active muscle forcing.

The high internal pressure in C. elegans is represented as a line tension p along this midline

and is chosen such that the midline is inextensible (with length fixed at 1 mm from head

to tail). Internal pressure helps maintain the worm’s shape and relaxes the body back to a

straight configuration in the absence of muscle activation.

Bending due to active muscle force is represented by a torque acting on the midline of the

body. As we show below, this torque may be expressed as a preferred curvature β = β(u, t)

along the body midline; here, β(u, t) has units of curvature, u denotes the position along the

midline of the body (from 0 in the head to 1 in the tail) and t denotes time. Thus, β(u, t)

will vary along the body coordinate and in time. The preferred curvature is analogous to

a time-changing rest (or preferred) length in a spring, whose response is proportional to its

displacement as captured by Eq. (S2). We adopt a convention in which positive and negative

values of β correspond to dorsal and ventral excitation respectively. The body curvature,

κ = κ(u, t), is generated by the active moment β(u, t) which in turn follows the muscle

activation A(u, t).

Finally, the resistive environmental drag forces are decomposed into two forces acting in

directions normal and tangential to the body,

Fenv = Kνvνν +Kτvττ (S1)

with corresponding drag coefficients Kν ≥ Kτ acting along the ventral, ν, and dorsal, τ ,

1



directions, respectively; here, vν and vτ denote the normal and tangential components of

speed of a point along the body. The balance of forces is summarised as follows:

Fenv −
(pτ )u
|xu|

+
1

|xu|

(
EI2

|xu|
(κ− β)uν +

ηI2

|xu|
κtuν

)
u

= 0 , (S2)

where x denotes a coordinate of a point along the body (in the lab frame) and the subscripts

t and u denote partial derivatives with respect to t and u (along the midline of the worm),

respectively. Equation (S2) allows us to seamlessly translate between units of torque and

body curvature. The function I2 represents the second moment of area

I2(u) =
π

2

[(
R(u) +

rcuticle

2

)4

−
(
R(u)− rcuticle

2

)4
]
, (S3)

where R, the radius of the body, varies along the body and is defined as

R(u) = R̄
2
√

(ε+ u)(ε+ 1− u)

1 + 2ε
(S4)

for small ε (which sets the width of the body at the head and tail ends). Zero force and zero

torque are enforced at the boundaries, such that β = κ at both ends of the body.

Nondimensionalisation

A detailed description of the nondimensionalisation is given by Cohen and Ranner (2017)1.

Briefly, the equations are recast in non-dimensionless form and typical parameters are im-

posed in a regime of interest. These include geometrical quantities (the length and second

moment of area of the worm), a time scale, estimated material properties of the body (the

Young’s modulus and internal viscosity) and external drag coefficients.

Estimates of the Young’s modulus of the worm vary from O(kPa) to O(100 MPa). For pur-

poses of nondimensionalisation, here we adopt a mid-range value of E = 5 MPa.1 (Note that

this value differs from our simulation default value of E = 100 kPa; see Table 1, and further

discussion below.) Using a time scale and drag coefficients matching the undulation period

of C. elegans in agar-like conditions and corresponding drag coefficients (Table S1), yields

a reduced model in which the internal viscosity is negligible. Hence, the nondimensional

model equation can be expressed in terms of only two dimensionless parameters

K = Kν/Kτ , e =
I T0

L4

E

Kτ

, (S5)
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Description Label Value

Geometric constants

Body length L 1 mm

Cuticle width rcuticle 0.5µm

Maximum radius along body R̄ 40µm

Muscle constants

Muscle timescale τm 0.1 s

Curvature amplitude β0 10 mm−1

Nondimensionalisation

Young’s modulus E 5 x 106 Pa

Undulation period (agar) T0 3.3 s

Tangential drag coefficient (agar) Kτ 3.2 kg m−1 s−1

Normal drag coefficient (agar) Kτ 128 kg m−1 s−1

Feed-forward control

Feed-forward wavelength λf 0.6 mm

Feed-forward period Tf 2 s

Proprioceptively-driven control

Proprioceptive threshold θ 3

Proprioceptive range δ 0.5

TABLE S1: Parameters used in model.

where I = 2πR̄3rcuticle, yielding the dimensionless model equation for the balance of forces

Kvνν + vττ −
(pτ )u
|xu|

+
e

|xu|

(
Ĩ

|xu|
(κ− β)uν

)
u

= 0 , (S6)

with the dimensionless second moment of area defined as Ĩ = I2(u)/I.

The nondimensional model is solved using a finite element method with 128 mesh points.1

Its key advantages for our purposes here are seamless integration with neural and muscular

control, numerical stability and high computational efficiency.
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S1.2. Neuromechanical coupling

Model muscles

Cohen and Ranner’s model1 uses instantaneous forcing β(u, t) to generate body bending.

In other words, that model lacks an explicit representation of muscles and neurons. Here,

we include a minimal muscle model, whose input can be viewed as a current input from

the nervous system and whose output is the muscle torque β(u, t), which acts directly on

the viscoelastic shell (since nematode body wall muscles are tethered to the cuticle of the

animal). Rather than discrete body wall muscles, our model uses a continuous muscle

forcing along the ventral and dorsal sides, approximating the effect of ventral and dorsal

muscles. Muscles respond to neural activation with a muscle time scale τm, and the combined

activation of ventral and dorsal muscles translates to an effective torque that acts on the

midline of the body according to

τm
dβ

dt
= −β + β0A , (S7)

where A = A(u) represents a neural activation or muscle input, β = β(u, t) is the torque

experienced by the midline (in units of curvature), and β0 is the amplitude of the preferred

curvature and dictates the amplitude of undulations (or maximal curvature κ, see Eq. (S6)).

Central pattern generated control

Here, we consider a minimal model in which the action of this circuit on the muscles can

be captured by continuous unit amplitude oscillations with an imposed period, Tf , and

undulation wavelength, λf , propagating from head to tail. Thus, the input to the muscles

is given by travelling sine wave

A(u, t) = sin(2πu/λf − 2πt/Tf ) . (S8)

Our choice of this model is motivated precisely by its simplicity, to serve as a minimal model

of feed-forward (open loop) control and as a basis for comparison with our own model of

feedback-driven control and with future models of neural control, whether driven by feed-

forward or feedback control.
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Proprioceptively driven control

We assume proprioceptively generated control relies exclusively on feedback from the shape

of the body of the nematode. The C. elegans forward locomotion motor circuit consists of

command interneurons that innervate motor neurons along the ventral nerve cord. Ventral

motor neurons innervate ventral body wall muscles and dorsal motor neurons innervate

dorsal body wall muscles (Fig. 1(a)). B-type motor neurons are the primary excitatory

motor neurons implicated in forward locomotion.2 Here, we model B-type motor neurons

as bistable elements, following Boyle et al. (2012)3 and inspired by electrophysiological

recordings of bistable RMD head motor neurons.4 In our continuous representation of the

body, the state of ventral (VB) and dorsal (DB) motor neurons at a point u along the body

is given by V V(u), V D(u) ∈ {0, 1}, respectively.

In our simplified representation of the circuit, only B-type neurons are represented explicitly.

The activation of B-type motor neurons is determined by two components: (i) current

inputs from other neurons in the locomotion neural circuit and (ii) a dynamic proprioceptive

current. A tonic input from the AVB command interneurons, and VD to VB inhibition are

included implicitly. The former is treated as a constant and can therefore be absorbed into

the switching threshold θ. VD to VB inhibition is treated as a reset3 that ensures VB

and DB neurons are always in antiphase (when VB is on, DB is off and vice versa). For a

neuron at position u, the proprioceptive input current is typically modelled as the stretch

of one side of the body (ventral or dorsal) relative to a rest length. It is easy to show

that in our fixed radius geometry, this measure of stretch can be reformulated as a measure

of curvature, which conveniently allows us to use our representation of the midline of the

body. Accordingly, here, the proprioceptive input current Iκ(u) is given by the mean body

curvature over a specified proprioceptive range, represented as a fraction of the body length,

∆(u):

Iκ(u) =
1

|∆(u)|

∫ u+∆(u)

u

κ(u′)|xu(u′)| du′ (S9)

Here, we adopt a convention whereby a positive (negative) range corresponds to a posterior

(anterior) receptive field, and where positive curvatures κ, a positive proprioceptive input

current and a positive preferred curvature β all correspond to dorsal bending, whereas

negative values correspond to ventral bending. Anteriorly facing processes are found in

A-type motor neurons of the ventral nerve cord and have been implicated in backward
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locomotion.2,5,6

When the proprioceptive input Iκ(u) exceeds the proprioceptive threshold θ (Table S1), the

dorsal neuron will switch off and the ventral one on. When the input falls below some

threshold (here, taken as −θ for symmetry) the dorsal neuron will switch on and the ventral

one off. We implicitly assume synchrony of DB and VD, and similarly of VB and DD (see

Fig. 1(a)). Neuronal state switching is then given by

If Iκ(u) > θ , then

V
D(u)→ 0

V V(u)→ 1 ;

If Iκ(u) < −θ , then

V
D(u)→ 1

V V(u)→ 0 .
(S10)

Here, the proprioceptive range ∆(u) is set to δ for u ∈ [0, 1− δ] (in the anterior of the body

when δ = 0.5 (Table S1)) and decreases linearly as 1 − u in the posterior u ∈ [1 − δ, 1],

i.e. ∆(u) = min(δ, 1 − u). The activation thresholds are set to an effective curvature of

θ = 3 (normalised by the body length L). By imposing anti-phase activation, the state at

position u along the body reduces to the difference between the dorsal and ventral activation

A(u) = V D(u) − V V(u) = ±1. This activation A(u) then feeds into Eq. (S7) to drive the

muscles.

Model Code

The model code is publicly available and can be found at the following address:

https://bitbucket.org/leedswormlab/curve-worm-royal-society-paper
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S2. COMPUTING KINEMATIC PARAMETERS

All simulations were performed for 60 seconds using integration time steps of 0.3 ms for feed-

forward control and .03 ms for proprioceptive control. The transients in some simulations

were negligible (<1 s) but others varied significantly with model parameters. In all kinematic

analysis, we truncated the transient, thus limiting our analysis to periodic activity.

Frequency: The period of undulations, T , was computed from curvature kymograms. For

a given point along the body, the period was defined as the mean time interval between zero

crossing of the body curvature κ(u, t) at u = 0.125 (from negative to positive values). In

coordinated locomotion, the period of undulation does not depend on the position along the

body. The frequency of undulations is given by f = 1/T .

Wavelength: In our proprioceptive model (as in experimental observations), the undula-

tion wavelength increases along the body (from head to tail). We defined wavelength as the

distance along the midline of the body spanning an entire cycle of body curvatures7.This

distance along the body is the physiologically meaningful entity and can therefore be ex-

tracted from the postural dynamics of the worm. (The conventional wavelength is given by

the straight line connecting the corresponding two points along the body.) Note that for

sufficiently dilute (low viscosity) environments, the wavelength is longer than the length of

the body. We computed wavelength by calculating the gradient of the curvature κ(u, t) as

a function of body coordinate u and time t within a section of the body. Towards the tip of

the tail the value of the wavelength changes. This may be due to a combination of boundary

effects and decreasing proprioceptive range. We therefore do not use this body section as

our measure of wavelength. We instead define wavelength as

λ = T
∂κ/∂u

∂κ/∂t
(S11)

over the region u ∈ (0.1, 2/3). A small amount of filtering of the curvatures ensured that the

derivatives are well approximated using a finite difference. An average was taken across all

available space u and time t using a histogram mode with logarithmically distributed bins.

Speed: Speed was computed by tracking the midpoint of the nematode’s body (u = 0.5)

over time, and performing a straight line fit over the midpoint trajectory to remove side-to-

side displacement arising from the undulatory movement. The speed was then defined as

the distance travelled along the straight line over the corresponding time interval.
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Thrust: To gain insight into the propulsive thrust, we considered the progress made per

undulation. Thrust was therefore defined as speed/frequency and normalised by the body

length to yield a dimensionless measure (corresponding to 1-slip in the notation of Gray and

Lissmann (1964)8).

Neuromechanical Phase Lag: To calculate the phase lag φ(u, t), we took the Hilbert

transform of the torque, β(u, t), and curvature, κ(u, t), separately using MATLAB’s inbuilt

hilbert function. Unwrapping the angles yielded monotonically increasing phases along the

body for each point in time, φβ(u, t) and φκ(u, t). The neuromechanical phase lag φ(u, t)

was defined as the time averaged difference φ(u, t) = φκ(u, t)− φβ(u, t). The corresponding

time lags were obtained by normalising by the angular frequency, 2πf .
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S3. SUPPLEMENTARY RESULTS

Supplementary Figure captions

Figure S1:

Simulations of proprioceptively driven control with anteriorly facing proprioceptive feed-

back. Simulation parameters as in Table S1 except for the proprioceptive range, set to

δ = −0.5 such that ∆(u) = min(u, δ) and integration limits in Eq. (S9) updated accord-

ingly. (a) Backward locomotion in low K environment. (b) Backward locomotion in a high

K environment. Reversing the polarity of the proprioceptive current to polarise rather than

depolarise the neurons in response to stretch, or else to depolarise in response to contraction

rather than stretch reinstates forward locomotion.

Figure S2:

Undulation frequency, wavelength and speed, obtained from simulation results of proprio-

ceptively driven forward locomotion with default parameter values for the neural control,

in a variety of Newtonian media and with different body Young’s moduli. The results are

taken from Fig. 2 of the main paper and replotted here as a function of the dimensional

tangential drag coefficient. Frequency, wavelength and speed all increase with body stiffness

but fall with increasing fluid viscosity. The expected range of gait modulation depends on

material properties of the body.

Figure S3:

Extended simulation results of proprioceptively driven forward locomotion in eight differ-

ent viscoelastic fluids, subject to different proprioceptive thresholds. All other simulation

parameters are the default values (Table S1). Figure 3(a) in the main paper shows results

for four of the eight conditions shown here (a,b and f). During coordinated locomotion, the

frequency determines the speed indicating that the proprioceptive threshold effect on thrust

is negligible (c–e).

Figure S4:

Extended simulation results of proprioceptively driven forward locomotion in eight different
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viscoelastic fluids, subject to different proprioceptive ranges. All other simulation param-

eters are the default values (Table S1). Figure 3(b) in the main paper shows results for

four of the eight conditions shown here (a,b and f). (a) Undulation frequency falls with

increasing proprioceptive range across all environments tested. (b) The sensitivity of the

undulation wavelength grows with increasing proprioceptive range. Here, considerable gait

modulation requires an effectively large proprioceptive range of 40-50% of the body. (c)

Significant thrust and (d) speed require an effectively non-local proprioceptive range. The

most efficient locomotion is obtained for a maximal thrust, which declines for long propri-

oceptive ranges (>50% of the body), indicating that speed is not fully determined by the

undulation frequency (e).

Figure S5:

Neuromechanical phase and time lags for different control circuits. (a–b) Neuromechanical

time lags (as distinct from phase lags) under (a) feed-forward and (b) proprioceptive control,

corresponding to results from Fig. 4 from main paper. (c) Neuromechanical time lags and

(d) corresponding phase lags, obtained from simulations with a proprioceptive range of

δ = 0.2 and a range of Young’s moduli. The phase lag is now clamped for u ∈ [0, 0.8] before

increasing near the tail. The increase in lag is more substantial for lower values of Young’s

modulus. (e) Fixing the Young’s modulus at the default value (100 kPa) and varying the

proprioceptive range, δ. The phase clamping breaks down consistently around u = 1− δ.
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S3.1. Anterior proprioception leads to backward locomotion

(a) (b)

FIG. S1:
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S3.2. Proprioceptive feedback couples undulatory kinematics to

biomechanical parameters

FIG. S2:

12



S3.3. The kinematics of forward locomotion depends on the proprioceptive

threshold

(a) (b)

(c) (d)

(e) (f)

FIG. S3:
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S3.4. The kinematics of forward locomotion depends on the effective

proprioceptive range

(a) (b)

(c)

T
h
ru
st

(d)

(e) (f)

FIG. S4:
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S3.5. Reducing proprioceptive range confirms anterior phase lag clamping

under feedback control

(a) (b)

(c) (d)

(e)

FIG. S5:
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