Dynamic modeling of personal protection control strategies for vector-borne disease limits the role of diversity amplification: Supplementary material

Jeffery Demers^{1 2}, Sharon Bewick¹, Justin Calabrese^{1 2}, and William F. Fagan¹ ¹Department of Biology, University of Maryland College Park, College Park, MD 20742, United States ²Conservation Ecology Center, Smithsonian Conservation Biology Institute,

National Zoological Park, 1500 Remount Rd., Front Royal, VA 22630, United States

S1 Effects of varied human recovery time

The following plots are the equivalent of Figs. 1 - 4 in the main text for a human recovery times 1/r = 1 week and 1/r = 6 months. The dynamic two-class model behaves more similarly to the static two-class model for shorter recovery times, and more similarly the one-class model for longer recovery times.

S1.1 One week recovery time

Figure S1: Dependencies of \mathcal{R}_0 on DEET $(1/\gamma = 15 \text{ days})$ control strength for the dynamic two-class model(blue), static two-class model (red), and one-class model (green), where the human recovery time 1/r = 1 week. Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Two-host models display diversity amplification at control strengths where respective scaled \mathcal{R}_0 curves rise above the gray $\mathcal{R}_0 = 1$ line.

Figure S2: Dependencies of \mathcal{R}_0 on intermediate protection $(1/\gamma = 9 \text{ months})$ control strength, where the human recovery time 1/r = 1 week. Curve colors and styles are defined as in Fig. S1.

Figure S3: Dependencies of \mathcal{R}_0 on bed net $(1/\gamma = 5 \text{ years})$ control strength, where the human recovery time 1/r = 1 week. Curve colors and styles are interpreted as in Fig. S1.

Figure S4: Illustrations of amplification range and strength reduction as functions of AN_h using the dynamic two-class model(blue), static two-class model (red), and one-class model (green), where the human recovery time 1/r = 1 week. The minimum control strength for amplification suppression is the value of control strength κ^* such that scaled \mathcal{R}_0 exceeds unity for all control strengths $\kappa \in [0, \kappa^*]$. The maximum scaled \mathcal{R}_0 is the value of scaled \mathcal{R}_0 at the peak of a model's \mathcal{R}_0 vs κ curve for a given value of AN_h .

S1.2 Six month recovery time

Figure S5: Dependencies of \mathcal{R}_0 on DEET $(1/\gamma = 15 \text{ days})$ control strength for the dynamic two-class model(blue), static two-class model (red), and one-class model (green), where the human recovery time 1/r = 6 months. Corresponding equilibrium proportions of protected hosts are given by the dashed black curve. Two-host models display diversity amplification at control strengths where respective scaled \mathcal{R}_0 curves rise above the gray $\mathcal{R}_0 = 1$ line.

Figure S6: Dependencies of \mathcal{R}_0 on intermediate protection $(1/\gamma = 9 \text{ months})$ control strength, where the human recovery time 1/r = 6 months. Curve colors and styles are defined as in Fig. S1.

Figure S7: Dependencies of \mathcal{R}_0 on bed net $(1/\gamma = 5 \text{ years})$ control strength, where the human recovery time 1/r = 6 months. Curve colors and styles are interpreted as in Fig. S1.

Figure S8: Illustrations of amplification range and strength reduction as functions of AN_h using the dynamic two-class model(blue), static two-class model (red), and one-class model (green), where the human recovery time 1/r = 6 months. The minimum control strength for amplification suppression is the value of control strength κ^* such that scaled \mathcal{R}_0 exceeds unity for all control strengths $\kappa \in [0, \kappa^*]$. The maximum scaled \mathcal{R}_0 is the value of scaled \mathcal{R}_0 at the peak of a model's \mathcal{R}_0 vs κ curve for a given value of AN_h .