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Model of between-host dynamics 11 

We consider a simple model of the between-host dynamics of the Daphnia-Pasteuria system. This model 12 

(inspired by [46]) captures many of the features of the experimental system described in the main text, 13 

including decaying cadavers and the environmental reservoir of dormant, but infective spores. Using 𝑆, 𝐼, C 14 

and 𝐹 to denote the densities of susceptible hosts, infected hosts, cadavers of infected hosts, and free-15 

living spores of the pathogen, the epidemiological model we use is 16 

 𝑑𝑆(𝑡)

𝑑𝑡
 =  𝜃 −  𝜇𝑆(𝑡) − 𝑆(𝑡)∑𝛽𝑖

𝑖

𝐹𝑖(𝑡) 
(S1a) 

 𝜕𝐼𝑖(𝑎, 𝑡)

𝜕𝑡
 = −

𝜕𝐼𝑖(𝑎, 𝑡)

𝜕𝑎
− 𝐷𝑖(𝑎)𝐼𝑖(𝑎, 𝑡) 

(S1b) 

 𝑑𝐶𝑖,𝑎(𝑡)

𝑑𝑡
 =  𝐷𝑖(𝑎)𝐼𝑖(𝑎, 𝑡) − 𝛿

𝐶𝐶𝑖,𝑎(𝑡) 
(S1c) 

 𝑑𝐹𝑖(𝑡)

𝑑𝑡
 =  ∫ 𝜌𝜔𝑖(𝑎)𝐶𝑖,𝑎𝑑𝑎 −

∞

0

𝛿𝑖
𝐹𝐹𝑖(𝑡) 

(S1d) 

with boundary condition 𝐼𝑖(0, 𝑡) =  𝛽𝑖𝐹𝑖(𝑡)𝑆(𝑡) and where 𝑖 indexes pathogen genotype and 𝑎 indexes the 17 

age of infection. We assume that there is a constant influx of susceptible individuals at rate 𝜃 and that all 18 

individuals suffer a constant per capita mortality rate of 𝜇. The first term in equation S1b describes the flow 19 

of infected hosts who survive and move into the next infection age class. The term 𝐷𝑖(𝑎) is the infection-20 

age and pathogen genotype-specific rate at which infections end due to host death; so, 𝐷𝑖(𝑎) = 𝑣𝑖(𝑎) + 𝜇, 21 

where 𝑣𝑖(𝑎) is the rate of pathogen-induced mortality at infection age 𝑎 (i.e., virulence). The cadavers of 22 

hosts that died at different infection ages are tracked separately; all cadavers decay at a rate 𝛿𝐶 (here, the 23 

superscript defines the class to which the death rate applies), but release spores at a rate that is 24 

proportional (with coefficient 𝜌) to the spore load at the time of host death, 𝜔𝑖(𝑎). The rates of 25 

environmental transmission and decay of spores are given by 𝛽𝑖 and 𝛿𝑖
𝐹.   26 
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We can further simplify this model if we assume that the dynamics of decaying cadavers and spores in the 27 

environment are fast relative to the other epidemiological dynamics. When this is true, then 
𝑑𝐶𝑖,𝑎

𝑑𝑡
= 0 and 28 

𝑑𝐹𝑖

𝑑𝑡
= 0, giving  29 

 
𝐶𝑖,𝑎(𝑡) =

𝐷𝑖(𝑎)𝐼𝑖(𝑎, 𝑡)

𝛿𝐶
 

(S2a) 

 
𝐹𝑖(𝑡) =

1

𝛿𝑖
𝐹∫ 𝜌𝜔𝑖(𝑎)𝐶𝑖,𝑎(𝑡)𝑑𝑎.

∞

0

 
(S2a) 

We can then rewrite the model as: 30 

 𝑑𝑆(𝑡)

𝑑𝑡
 =  𝜃 −  𝜇𝑆(𝑡) − 𝑆(𝑡)∑∫ 𝜙𝑖𝜔𝑖(𝑎)𝐷𝑖(𝑎)𝐼𝑖(𝑎, 𝑡)𝑑𝑎

∞

0𝑖

 
(S3a) 

 𝜕𝐼𝑖(𝑎, 𝑡)

𝜕𝑡
 = −

𝜕𝐼𝑖(𝑎, 𝑡)

𝜕𝑎
− 𝐷𝑖(𝑎)𝐼𝑖(𝑎, 𝑡) 

(S3b) 

with boundary condition 𝐼𝑖(0, 𝑡) = 𝑆(𝑡) ∫ 𝜙𝑖𝜔𝑖(𝑎)𝐷𝑖(𝑎)𝐼𝑖(𝑎, 𝑡)𝑑𝑎
∞

0
, and where 𝜙𝑖 =

𝛽𝑖𝜌

𝛿𝑖
𝐹𝛿𝐶

.  Although 31 

transmission and decay of spores may vary across pathogen genotypes in reality, for the remainder of our 32 

analyses we assume that they do not (thus, we drop the dependency of 𝜙 on 𝑖). From this general model, 33 

we now have a composite transmission function 𝐵𝑖(𝑎, 𝑡) = 𝜙𝜔𝑖(𝑎)𝐷𝑖(𝑎)𝑆(𝑡) which describes the per 34 

capita rate at which new infections of genotype 𝑖 are created. We can then define the genotype specific 35 

transmission rate as 𝑏𝑖(𝑎) = 𝜙 𝜔𝑖(𝑎)𝐷𝑖(𝑎). For linking this model to experimental data, we have direct 36 

estimates of 𝜔𝑖(𝑎); since we do not have independent experimental estimates of natural and pathogen-37 

induced mortality, we equate our mortality estimates to virulence, with 𝐷𝑖(𝑎) ≈ 𝑣𝑖(𝑎). Finally, we 38 

arbitrarily assume that 𝜙 = 0.01.  39 

Evolutionary dynamics 40 

With the between-host model in the form presented above, we can make use of the theoretical framework 41 

developed in Day et al [30] and refined in Mideo et al [25] to track the evolution of the mean transmission 42 

rate, �̅�(𝑎), and virulence, �̅�(𝑎), across pathogen genotypes in this system. Because the data we collected 43 

are discrete, we use the discrete-time equations for tracking evolutionary dynamics from [25].  44 

Briefly, when pathogen fitness depends on two traits, like transmission and virulence (both functions of the 45 

age of infection), the evolutionary dynamics of those traits can be estimated as  46 

In the above expressions, the 𝜓𝑥(𝑠; �̅�, �̅�) terms represent selection gradients acting on a particular trait (𝑥) 47 

at a particular infection age (𝑠), evaluated at the population mean trait values (�̅�, �̅�). The 𝐺𝑥,𝑦(𝑎, 𝑠) terms 48 

represent covariance matrices, describing any genetic correlation between traits 𝑥 and 𝑦 at infection ages 𝑎 49 

and 𝑠, respectively. These equations capture the fact that evolutionary change in a given trait at a particular 50 

age of infection (e.g., �̅�(𝑎)) is determined by the summed effect of selection acting on that trait at each age 51 

of infection (e.g., 𝜓𝑏(𝑠; �̅�, �̅�)), mediated by any genetic covariance in the trait across infection ages (e.g., 52 

𝐺𝑏,𝑏(𝑎, 𝑠)), plus any contribution of selection acting on the other trait at each infection age (e.g., 53 

Δ�̅�(𝑎) ≈∑𝜓𝑏(𝑠; �̅�, �̅�)𝐺𝑏,𝑏(𝑎, 𝑠) +∑𝜓𝑣(𝑠; �̅�, �̅�)𝐺𝑏,𝑣(𝑎, 𝑠)

∞

𝑠=0

∞

𝑠=0

 
(S4a) 

Δ�̅�(𝑎) ≈∑𝜓𝑏(𝑠; �̅�, �̅�)𝐺𝑣,𝑏(𝑎, 𝑠) +∑𝜓𝑣(𝑠; �̅�, �̅�)𝐺𝑣,𝑣(𝑎, 𝑠)

∞

𝑠=0

∞

𝑠=0

. 
(S4b) 
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𝜓𝑣(𝑠; �̅�, �̅�)), as mediated by any cross-covariance between traits (e.g., 𝐺𝑏,𝑣(𝑎, 𝑠)). Note that we have 54 

dropped the dependencies of some of these terms on time, because we assume that the epidemiological 55 

dynamics are fast relative to the evolutionary dynamics (as in [25]). (Also note that we have used a 56 

different symbol (𝜓) to specify selection gradients compared to [25] and [30].)  57 

One novelty of the approach developed in [30] is that the selection gradient terms emerge from an 58 

epidemiological model. Using a model with a similar form to the one we presented above, these selection 59 

gradients were found to be   60 

𝜓𝑏(𝑠; �̅�, �̅�) =
𝑞(𝑠)

𝑘
𝑆 

(S5a) 

𝜓𝑣(𝑠; �̅�, �̅�) = −
𝑞(𝑠)

𝑘
𝜎(𝑠), 

(S5b) 

where 𝑞(𝑠) gives the age distribution of infections (and is defined in the next section), 𝑘 is a combined 61 

measure of the generation time of infections and transmission, and 𝜎(𝑠) is the reproductive value of age 62 

infections [30]. The latter two quantities are given by 63 

 
𝑘 =

∑ 𝑎�̅�(𝑎)𝑆𝜆−𝑎∏ (1 − �̅�(𝑤))𝑎
𝑤=1

∞
𝑎=1

∑ 𝜆−𝑎∏ (1 − �̅�(𝑤))𝑎
𝑤=1

∞
𝑎=1

 
(S6a) 

 
𝜎(𝑠) =

∑ �̅�(𝑎)𝑆𝜆−𝑎∏ (1 − �̅�(𝑤))𝑎
𝑤=1

∞
𝑎=𝑠

𝜆−𝑠∏ (1 − �̅�(𝑤))𝑠
𝑤=1

, 
(S6b) 

where 𝜆 is the dominant eigenvalue of a matrix describing transitions between infections of different ages 64 

(the 𝐋 matrix defined in the next section). Fuller derivations of these expressions can be found in [25] and 65 

[30]. Note that equations S5 are slightly different than the ones presented in [25] owing to the fact that 66 

mean virulence changes with infection age in our “Complex mortality” scenario (see dashed lines in Figure 67 

3a, main text). Thus, the probability of an infection lasting to age 𝑎 is given by ∏ (1 − �̅�(𝑤))𝑎
𝑤=1 , rather 68 

than (1 − �̅�)𝑎 (as in [25]). When mean virulence is constant across infection ages, as in our “Simplified 69 

mortality” scenario, these terms are equivalent.  70 

Substituting equations S5 and S6 into S4, gives System 1 of the main text.  71 

Epidemiological settings 72 

In general, we may expect quantities like 𝑆, 𝑞(𝑠), 𝜎(𝑠) and 𝑘 to change over time, but here (as in [25]) we 73 

assume that the epidemiological dynamics are fast relative to the evolutionary dynamics. To explore the 74 

influence of two different epidemiological settings, without having to explicitly track their dynamics, we 75 

define a matrix of the transitions between infections of different ages, similar to a Leslie matrix:  76 

 

𝐋 =  

(

 
 

𝑆�̅�(1) 𝑆�̅�(2) ⋯ 𝑆�̅�(𝑛 − 1) 𝑆�̅�(𝑛)

1 − �̅�(1) 0 ⋯ 0 0
0 1 − �̅�(2) ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 − �̅�(𝑛 − 1) 0 )

 
 

, 

(S7) 

where 𝑛 is the maximum age of infection. Decomposition of the 𝐋 matrix into its dominant eigenvalue and 77 

the associated eigenvector gives the long-term growth rate of infected hosts (λ) and the stable age 78 

distribution of infections (𝑞(𝑠)), respectively. Manipulation of λ, 𝑞(𝑠), and 𝑆 values allows for the 79 

expanding epidemic and endemic scenarios to be estimated as in the main text.  80 
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As a final step, we calculate the rate of evolutionary change in our target trait of interest, 𝜔(𝑎), the 81 

average spore loads at each age of infection in males and females. To a close approximation, for our data 82 

Ε[𝜔(𝑎)𝑣(𝑎)] = Ε[𝜔(𝑎)]Ε[𝑣(𝑎)]. Thus, assuming �̅�(𝑎) = 𝜙𝜔(𝑎)�̅�(𝑎) (and 
𝑑�̅�(𝑎)

𝑑𝑡
≈ ∆�̅�(𝑎)), we can 83 

estimate 
𝑑�̅�(𝑎)

𝑑𝑡
 as follows: 84 

 𝑑�̅�(𝑎)

𝑑𝑡
=
𝑑

𝑑𝑡
(𝜙𝜔(𝑎)�̅�(𝑎)) 

(S8a) 

 𝑑�̅�(𝑎)

𝑑𝑡
= 𝜙 (�̅�(𝑎)

𝑑𝜔(𝑎)

𝑑𝑡
+ 𝜔(𝑎)

𝑑�̅�(𝑎)

𝑑𝑡
) 

(S8b) 

 
𝑑𝜔(𝑎)

𝑑𝑡
=
(
1
𝜙
𝑑�̅�(𝑎)
𝑑𝑡

− 𝜔(𝑎)
𝑑�̅�(𝑎)
𝑑𝑡

)

�̅�(𝑎)
. 

(S8c) 

The infection-age-specific average spore loads, 𝜔(𝑎), and mortality rates, �̅�(𝑎), are given by the data. The 85 

other terms in equation S8c are approximated as solutions to system 1 in the main text.    86 
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Supplementary tables 87 

Table S1: The Influence of age of infection on the production of transmission spores in male-limited and 88 

female-limited infections. Shown are the results of the regression analysis of spore loads (in millions per 89 

animal) on the age of infection (in days), partitioned by host sex and pathogen genotype. Spore loads at 90 

each time point were estimated by destructively sampled up to 20 infected individuals per sampling point.  91 

 92 
 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

  114 

Pathogen genotype Intercept SE P-value Slope SE P-value 

Female-limited infections 

C24 -1.124 0.497 0.028 0.133 0.020 <0.001 

C19 -0.208 0.209 0.321 0.106 0.008 <0.001 

C20 0.302 0.327 0.358 0.082 0.011 <0.001 

C14 1.221 0.363 0.001 0.074 0.011 <0.001 

C18 0.526 0.331 0.115 0.097 0.009 <0.001 

C01 -0.793 0.316 0.013 0.143 0.009 <0.001 

Male-limited infections 

C24 -2.184 0.321 <0.001 0.129 0.015 <0.001 

C19 0.357 0.120 0.003 0.029 0.005 <0.001 

C20 0.246 0.123 0.047 0.031 0.005 <0.001 

C14 0.426 0.135 0.002 0.021 0.005 <0.001 

C18 0.198 0.148 0.181 0.027 0.005 <0.001 

C01 0.307 0.112 0.007 0.025 0.004 <0.001 
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Table S2: The results of the two-factor analysis of covariance of the effect of host sex, pathogen genotype, 115 

age of infection and their interactions on the production of transmission spores. This analysis assessed 116 

whether the linear increase in spore loads per day was significantly different between the two sexes, the six 117 

genotypes, or all combinations. Before analysis, pathogen spore loads were square-root transformed and 118 

the analyses are based on a type 3 analysis of covariance.  119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

Table S3: Mortality estimates used in the main text. The last day that an infected individual could be 129 

tracked in the cross-infection experiment is given in brackets. We assumed a constant mortality rate from 130 

day 18 post-exposure (the first day that individuals were sampled) until this last day observed and 131 

determined the rate that would result in 99% of individuals dying by that day (rate =
ln(0.01)

𝑙𝑎𝑠𝑡.𝑑𝑎𝑦−17
). Finally, we 132 

convert these estimates into a probability of death in a single time step (1-Exp[-rate]). Since we do not have 133 

independent estimates of virulence and natural mortality, we treat this composite measure as the trait that 134 

is evolving (𝐷𝑖(𝑎) ≈ 𝑣𝑖(𝑎)).  135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

Effect df F-ratio P-value 

Host sex (male, female) 1, 1554 63.481 <0.001 

Pathogen genotype (GP) 5, 1554 19.372 <0.001 

Age of infection (in days) 1, 1554 162.488 <0.001 

Sex × GP 5, 1554 7.568 <0.001 

Sex × Age 1, 1554 2.237 0.135 

GP × Age 5, 1554 14.467 <0.001 

Sex × GP × Age 5, 1554 7.360 <0.001 

Scenario, Genotypes Males Females 

Scenario 1 – simple mortality 

All Genotypes 0.3 0.2 

Scenario 2 – complex mortality 

C24 0.264 (26) 0.401 (32) 

C19 0.215 (32) 0.264 (36) 

C20 0.181 (34) 0.237 (40) 

C14 0.147 (36) 0.215 (46) 

C18 0.138 (38) 0.197 (48) 

C01 0.138 (38) 0.197 (48) 
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