1 Electronic Supplemental Material S2

2 Using a robotic fish to investigate individual differences in social

- 3 responsiveness in the guppy (S2)
- 4 David Bierbach*, Tim Landgraf*, Pawel Romanczuk, Juliane Lukas, Hai Nguyen, Max Wolf,
- 5 Jens Krause

6

7 8

* Authors contributed equally

9 10

Calculation of average time-delayed cross-correlation (TLXC)

11

- 12 We calculated the time-delayed normalized cross correlation function for different values of
- 13 the lagtime τ : $C(\tau) = \langle v(t)v_f(t+\tau)\rangle_t$ with v_f being the velocity of the focal individual and $\langle ... \rangle_t$
- indicating a time average over all points where $v(t)v_f(t+\tau)$ is defined. As the cross correlation,
- requires the shifting of the velocity vector of the focal individual by k points, with $\tau = k\Delta t$ (Δt :
- 16 time difference between two time frames), the time average for different τ (different k) has to
- be taken over $k_{avg} = \lfloor (T \tau)/\Delta t \rfloor$ points where $v(t)v_f(t+\tau)$ is defined. Here T is the total
- trajectory duration used in experiments T=120s. For example for $\tau=3s$ and $\Delta t=0.111$, we
- obtain k_{avg} = 1053. Eventually, we calculated **TLXC** as the average $C(\tau)$ over a finite range of
- 20 timelags ($\tau = 0$ 6s): **TLXC**=< $C(\tau)$ >.