## **Supplementary Material**

Disruption of skin microbiota contributes to salamander disease

Molly C. Bletz<sup>1,2</sup>, Moira Kelly<sup>3</sup>, Joana Sabino Pinto<sup>2</sup>, Emma Bales<sup>2</sup>, Sarah Van Praet<sup>3</sup>, Wim Bert<sup>4</sup>, Filip Boyen<sup>3</sup>, Miguel Vences<sup>2</sup>, Sebastian Steinfartz<sup>2</sup>, Frank Pasmans<sup>3</sup>, An Martel<sup>3</sup>

- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd. Boston MA, 02125
- 2) Zoological Institute, Technical University of Braunschweig, Braunschweig, DE 38106
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
- 4) Department of Biology, Nematology Research Unit, Faculty of Science, Ghent University, 9000 Ghent, Belgium

## **Supplementary Methods**

## Bsal zoospore harvesting for inhibition assays:

*Bsal* zoospores were obtained from filtering *Bsal* cultures maintained in culture flasks. More specifically, after 5 days of growth in TGHL media this media was exchanged with sterile artificial pond water and incubated overnight. This stimulates the release of zoospores. The next day, the water was collected from the flask and centrifuged to pellet the released zoospores. The pelleted cells were then re-suspended in fresh media and filtered to remove any sporangia. The filtered zoospore suspension was then quantified, diluted to  $1 \times 10^6$  zoospores/ml, and added the assays wells.

**Detailed methods for** *Bsal* growth inhibition assays Briefly, zoospores were obtained from filtering *Bsal* cultures maintained in culture flasks (see supplemental methods for detailed protocol). *Bsal* zoospores were grown in the presence of the cell-free supernatant of each bacterial isolate in triplicate. Assay plates were incubated at 18° C for 7 days and optical density readings occurred on day 0, 4, 7 and 10. Bacterial CFS was collected from liquid cultures grown for 3 days on a shaker (250 rpm) and filtered through 0.22  $\mu$ m filter. Bacteria were not co-cultured with *Bsal* during cell-free supernatant preparation (CFS).

**Bacterial selection criteria for bacterial addition experiment:** Bacteria were selected using the following criteria: (1) consistent and distinct function across bacterial isolates assigned to the same bacterial OTU at 97% similarity (either consistent inhibition or enhancement in > 50% of cultured isolates), (2) commonly cultured from skin (cultured from > 5 individuals), and (3) present in fire salamander skin communities using next generation sequencing approaches.

**Detailed methods for 16S rRNA characterization of communities:** Only forward reads were used because reverse reads typically suffer from lower quality [35]. Quality filtered sequences were clustered into sub-operational taxonomic units (sOTUs) using Deblur [36]. Within this workflow, sequences were trimmed to 150 bp to maintain only high quality bases within each sequence, and sOTU clusters with less than 10 reads were removed as per the recommendations in Bokulich et al. [37]. Taxonomy was assigned with the naïve Bayesian Classifier and the RDP database [29]. A phylogenetic tree was built in QIIME using fasttree [30]. Samples were subsequently normalized at 5,818 reads per sample (depth chosen based on read count of lowest sample). The alpha diversity measures, OTU richness, Effective number of sOTUs (exp(Shannon)) [38], and Faith's phylogenetic diversity were calculated for all samples, and beta diversity (i.e. community structure) was calculated as the weighted Unifrac, unweighted Unifrac, Bray Curtis and Binary Jaccard pairwise distances in QIIME.

**Detailed methods for MALDi-TOF:** The samples were cultured for 24 hours at 15°C on Columbia agar with sheep blood (Oxoid, Wesel, Germany). One colony per sample was smeared upon a MALDI polished steel target plate, covered with 1  $\mu$ l HCCA matrix and, after air drying, loaded into the MALDI-TOF mass spectrometer. The spectra were obtained in linear positive mode with set-up values set as follows: ion source 1 voltage, 19,5 kV; ion source 2 voltage, 18,3 kV; lens voltage, 7 kV; mass range, 2–20 kDa; peak resolution, >400. The final spectrum was the sum of 6 single spectra, each obtained by 200 laser shots on random target spot positions (1200

shots in total). Spectra acquisition, peak picking, baseline subtraction, smoothing and final identification were performed with the standard biotyper settings of the MBT Compass software version 4.1. (Bruker Daltonik), which included a RUO database of 6,120 mean spectra projections (MSP) supplemented with the MSP's of the respective *Stenotrophomonas* and *Pseudomonas* isolates, obtained according to the manufacturer's guidelines. Identifications of the respective isolates was reported for score values higher than 2.

## **Supplementary Tables and Figures**

**Supplementary Table 1.** Field sampling locations across Germany and sample sizes for skin microbiome analysis. Locations with asterisk were also used for qPCR estimates of bacterial abundance.

|        | Locations       | # individuals |
|--------|-----------------|---------------|
|        | ER              | 2             |
|        | Fischbach*      | 38            |
|        | Haftenbach      | 40            |
|        | Kallerbach*     | 18            |
| el     | Lamersiefen     | 18            |
| Eifel  | Rosbach         | 46            |
|        | Sauerbach       | 22            |
|        | Solchbachtal*   | 14            |
|        | Weisse Wehe     | 7             |
|        | Zweifallshammer | 33            |
| Harz   |                 | 8             |
| Sollin | g               | 29            |

**Supplementary Table 2.** Sample sizes and the number of bacterial isolates cultured from the skin of fire salamanders from multiple populations across Germany.

| Location    | # bacteria isolates | # individuals |
|-------------|---------------------|---------------|
| Eifel       | 83                  | 6             |
| Harz        | 47                  | 7             |
| Kottenforst | 176                 | 34            |
| Liekwegen   | 25                  | 2             |
| Solling     | 140                 | 21            |
| Waldeck     | 161                 | 15            |
| Wolfsburg   | 76                  | 9             |

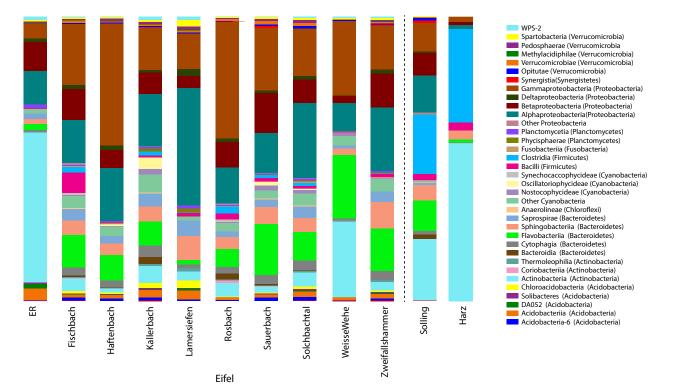
**Supplementary Table 3.** Functional capacities of bacterial isolates isolated from fire salamander skin that were re-tested multiple times using optical density-based growth assays. I = inhibiting, E = enhancing, N = no effect on growth

|              | Growth assay<br>replicates |   |   |   |   |   |  |  |  |
|--------------|----------------------------|---|---|---|---|---|--|--|--|
| Bacterial is |                            |   |   |   |   |   |  |  |  |
|              | ID                         | 1 | 2 | 3 | 4 | 5 |  |  |  |
|              | 205                        | Ι | Е | Ν |   |   |  |  |  |
|              | 335                        | Ι | Е | Ν |   |   |  |  |  |
|              | 281                        | Ι | Е | Ι |   |   |  |  |  |
|              | 473                        | Ι | E | E | E | E |  |  |  |
|              | 798                        | Ι | E | E | E | E |  |  |  |
|              | 737                        | Ι | E | E | E | E |  |  |  |
|              | 908                        | Е | Ν | Ν | Ι | Ν |  |  |  |
|              | 849                        | Е | Ι | Ι | Ι | Ι |  |  |  |
|              | 850                        | Е | Ι | Ι | Ι | Ι |  |  |  |
|              | 235                        | Е | Ν | Ι |   |   |  |  |  |
|              | 277                        | Е | Ν | Ι |   |   |  |  |  |
|              | 540                        | Е | Ν | Ι |   |   |  |  |  |
|              | 393                        | Ν | Ν | Ι |   |   |  |  |  |
|              | 23                         | Ν | Ν | Ν | Е | Е |  |  |  |
|              | 2                          | Ν | Е | Ν |   |   |  |  |  |
|              | 369                        | Ν | Ν | Ν | Ν | Е |  |  |  |
|              | 370                        | Ν | Е | Ν |   |   |  |  |  |

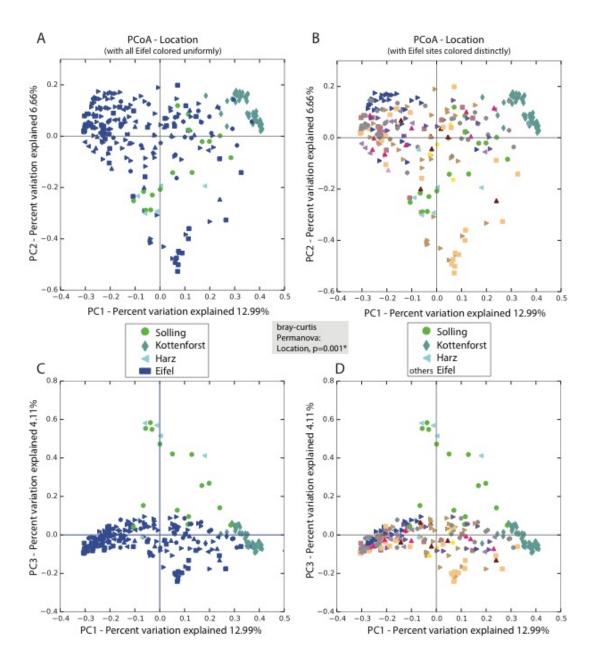
**Supplementary Table 4.** Differentially abundant bacterial taxa between *Bsal* exposed and control fire salamanders as identified through the LEfSe method. Bacterial taxa with an asterisk indicate which ones are presented in Figure 1.

| Treatment | Bacterial Taxa                                                                                      | LDA    | p-value |
|-----------|-----------------------------------------------------------------------------------------------------|--------|---------|
|           |                                                                                                     | 4.5.00 | 0.000   |
|           | Actinobacteria Actinobacteria Actinomycetales                                                       | 4.560  | 0.006   |
|           | Actinobacteria Actinobacteria Actinomycetales                                                       | 4.560  | 0.006   |
|           | Actinobacteria Actinobacteria Actinomycetales OTU0048*                                              | 4.560  | 0.006   |
|           | Actinobacteria Actinobacteria Actinomycetales<br>Microbacteriaceae <i>Leucobacter</i> OTU0124*      | 3.562  | 0.030   |
| lo        | Bacteroidetes Cytophagia                                                                            | 3.829  | 0.016   |
| Control   | Bacteroidetes Cytophagia Cytophagales                                                               | 3.829  | 0.016   |
| Ŭ         | Bacteroidetes Cytophagia Cytophagales Cytophagaceae                                                 | 3.829  | 0.016   |
|           | Bacteroidetes Cytophagia Cytophagales Cytophagaceae                                                 |        |         |
|           | Dyadobacter                                                                                         | 3.726  | 0.037   |
|           | Bacteroidetes Cytophagia Cytophagales Cytophagaceae                                                 |        |         |
|           | Dyadobacter OTU0064*                                                                                | 3.612  | 0.037   |
|           | Bacteroidetes Sphingobacteriales                                                                    | 2 (72  | 0.025   |
|           | Sphingobacteriaceae <i>Pedobacter</i><br>Bacteroidetes Flavobacteria Flavobacteriales Weeksellaceae | 3.673  | 0.025   |
|           | Chryseobacterium OTU0231*                                                                           | 3.594  | 0.022   |
|           | Firmicutes Bacilli Lactobacillales                                                                  | 3.545  | 0.022   |
|           | Firmicutes Bacilli Lactobacillales Streptococcaceae                                                 | 5.545  | 0.050   |
|           | Lactococcus OTU0204*                                                                                | 3.585  | 0.026   |
|           | Fusobacteria                                                                                        | 3.623  | 0.025   |
|           | Fusobacteria Fusobacteriia                                                                          | 3.623  | 0.025   |
|           | Fusobacteria Fusobacteriia Fusobacteriales                                                          | 3.623  | 0.025   |
|           | Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae                                          | 3.623  | 0.025   |
| Infected  | Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae                                          | 3.634  | 0.025   |
| nfe       | Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae                                          | 51051  | 0.023   |
| Ι         | OTU0029*                                                                                            | 3.634  | 0.025   |
|           | Proteobacteria Gammaproteobacteria Aeromonadales                                                    | 4.118  | 0.036   |
|           | Proteobacteria Gammaproteobacteria Aeromonadales                                                    |        |         |
|           | Aeromonadaceae                                                                                      | 4.118  | 0.036   |
|           | Proteobacteria Gammaproteobacteria Aeromonadales                                                    |        |         |
|           | Aeromonadaceae                                                                                      | 4.118  | 0.036   |
|           | Proteobacteria Gammaproteobacteria Xanthomonadales                                                  |        |         |
|           | Xanthomonadaceae <i>Stenotrophomonas acidaminiphila</i> OTU0014*                                    | 3.594  | 0.006   |
|           | 0100014                                                                                             | 5.594  | 0.000   |

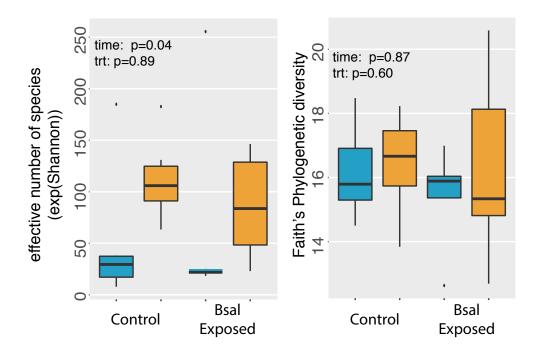
**Supplementary Table 5**. Taxonomic identity and quantity of bacterial isolates cultured from liver tissue of *Bsal*-infected fire salamanders. Common habitats, host and associations based on NCBI Blast hits are provided with pathogen and disease related associations in bolded text.


| Toyonomia idontity                                 | # isolates | # salamanders | Common habitata hast and associations                                                                                                                                                                                                                  |
|----------------------------------------------------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Taxonomic identity                                 |            |               | Common habitats, host and associations<br>amphibian skin associated microbiome                                                                                                                                                                         |
| Acinetobacter johnsonii<br>(Proteobacteria)        | 15         | 8             | (Madagascar); plant endophyte; <b>cerebrospinal</b><br><b>fluid in humans with meningitis</b> , wastewater;<br>water environments; microbiota of marine<br>sponges; <b>emerging fish pathogen</b>                                                      |
| <i>Chryseobacterium</i> sp. (Bacteroidetes)        | 9          | 5             | amphibian skin-assoiciated microbiota<br>(Madagascar, New Zealand); soil bacterial<br>communities; wastewater effluent; fish-<br>associated microbiome; dairy environment,                                                                             |
| (Dacteroidetes)                                    |            |               | disease aquatic animals; plant-associated<br>phyllosphere; human skin microbiome; diseased<br>skin microbiome                                                                                                                                          |
| <i>Sphingobacterium faecium</i><br>(Bacteroidetes) | 3          | 3             | truffle-associated bacteria; geothermal soils;<br>aquatic rock associated biofilms; soil and water<br>associated microbiomes; amphibian skin-<br>associated microbiome; <b>bacteria on disease</b><br><b>Brassicaceae plants</b> ; fish gut-associated |
| Sphingobacterium multivorum<br>(Bacteroidetes)     | 3          | 1             | microbiome;<br>endophytic plant bacteria; lichen-associated<br>bacteria; soil environments; plant rhizosphere<br>aquatic rock associated biofilms; cockroach                                                                                           |
| Flavobacterium succinicans<br>(Bacteroidetes)      | 2          | 1             | microbiota; fish-associated microbiome; soil<br>environments; plant-associated rhizosphere;<br><b>diseased fish</b>                                                                                                                                    |
| Myroides sp. (Bacteroidetes)                       | 2          | 1             | phototrophic river biofilms; amphibian skin<br>associated microbiomes (Madagascar); Bat<br>guano; <i>Drosophila</i> microbiota; environmental<br>microbiota; plant-associated phyllosphere; swine<br>lagoon; river biofilms; soil rhizosphere          |
| Erwinia sp. (Proteobacteria)                       | 2          | 2             | bacterial communities associated with aphids;<br>bark beetle microbiota; bacteria on fresh fruit<br>and vegetables; raw milk; mosquito-associated<br>bacteria                                                                                          |
| <i>Microbacterium maritypicum</i> (Actinobacteria) | 2          | 2             | coastal environments; bird plumage microbiota;<br>soil environments; amphibian skin-associated<br>microbiomes                                                                                                                                          |

| Arthrobacter sp.<br>(Actinobacteria)                   | 1 | 1 | microbiota of cave environments, microbiota of<br>marine sponges; marine and estuarine habitats;<br>bacterial endophyte of plants; isolate from the<br>surface of cheese; human skin microbiome;                                                                     |
|--------------------------------------------------------|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arthrobacter<br>psychrolactophilus<br>(Actinobacteria) | 1 | 1 | alpine soil and glacier cryoconite, Antarctic<br>environments, soil from a bamboo plantation,<br>sewage                                                                                                                                                              |
| Flavobacterium sp<br>(Bacteroidetes)                   | 1 | 1 | skin microbiome associated with disease<br>flares and treatment in children with atopic<br>dermatitis; soil environments; plant-associated<br>phyllosphere                                                                                                           |
| Enterobacteriaceae sp<br>(Proteobacteria)              | 1 | 1 | plant roots; nemotode gut microbiota; soil<br>environments; <b>bacteria on disease Brassicaceae</b><br><b>plants</b> ; beetle-associated microbiota                                                                                                                  |
| <i>Erwinia dispersa</i> (Proteobacteria)               | 1 | 1 | bacterial communities in boreal forest<br>mushrooms; isolates from purple siltstone; gut<br>symbionts in stinkbugs; plant root-associated<br>bacteria                                                                                                                |
| Klebsiella sp. (Proteobacteria)                        | 1 | 1 | plant-associated microbiota; soil environments;<br>water environments; nemotode associated<br>microbiota; date palm rhizosphere                                                                                                                                      |
| Acinetobacter guillouiae<br>(Proteobacteria)           | 1 | 1 | amphibian skin associated microbiota (captive<br>Atelopus); nemotode associated microbiota;<br>river sediment; <b>bacteria on diseased</b><br><b>Brassicaceae plants</b> ; plant rhizosphere                                                                         |
| Unclassified bacteria                                  | 1 | 1 | closest match 95% to Aeromonas salomicida -<br>an etiological agent for furunculosis, a disease<br>that causes septicemia, haemorrhages, muscle<br>lesions, inflammation of the lower intestine,<br>spleen enlargement, and death in freshwater<br>fish populations. |


**Supplementary Table 6.** Re-isolation of bacterial isolates added to fire salamander skin throughout the experiment. Yes indicates positive detection of added bacterium, No indicates negative detection, and '--' indicates time points were individuals were no longer in the experiment.

|                         | Individual | ļ   |     |     |     |     |     |     |     |     |     |     |
|-------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Treatment               | ID         | 7d  | 14d | 21d | 28d | 35d | 42d | 49d | 56d | 63d | 70d | 77d |
| ~                       | 8          | No  | No  | Yes | No  |     |     |     |     |     |     |     |
| ds s                    | 11         | No  | Yes | Yes | Yes | No  |     |     |     |     |     |     |
| na                      | 12         | Yes | No  | Yes | No  | No  | No  | No  | No  | No  |     |     |
| Pseudomonas             | 16         | No  | No  | No  | No  |     |     |     |     |     |     |     |
| opi                     | 18         | Yes | No  | No  | No  | Yes |     |     |     |     |     |     |
| sei                     | 19         | No  | Yes | Yes | No  |     |     |     |     |     |     |     |
| H                       | 27         | No  | Yes | No  | No  | No  | No  | No  | Yes | No  | No  | No  |
| se                      | 1          | No  | No  | No  | No  | Yes | No  | No  |     |     |     |     |
| one                     | 2          | Yes | No  | No  | Yes |     |     |     |     |     |     |     |
| mo                      | 3          | No  | No  | No  | No  |     |     |     |     |     |     |     |
| Stenotrophomonas<br>sp. | 4          | Yes | No  | Yes | No  |     |     |     |     |     |     |     |
|                         | 7          | Yes | No  | No  | Yes |     |     |     |     |     |     |     |
|                         | 15         | No  | No  | Yes | Yes | No  |     |     |     |     |     |     |
| Si                      | 24         | No  | Yes | Yes | No  |     |     |     |     |     |     |     |


**Supplementary Figure 1.** Bacterial taxonomic composition of fire salamander in natural populations at the order level. Ten populations from the Eifel region in Western Germany are including along with two populations (Harz and Solling) from Central Germany.



**Figure S2.** Principle Coordinate Analysis of Bray-Curtis distance of fire salamander skin microbial communities from multiple regions and locations across Germany. Skin microbial community structure differed significantly across locations. (A&B) display sample separation on PCo axis 1 and 2. (C&D) display sample separation on PCo axis 1 and 3. Plots (B) and (C) differentiate sites from the Eifel region of Germany.



**Supplementary Figure 3.** Alpha diversity of salamander skin microbiota in response to *Bsal* infection. Blue color indicates the before exposure time point and orange indicates the after time point (i.e. 10 days post infection). Statistical results from linear mixed models are provided evaluating the factors of time (Before vs After) and treatment (Bsal vs Control).

