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I. MOVIE CAPTIONS

Movie 1
Flow field with two rotating cilia. Flow magnitude was normalized by the frequency f and the cilium length L.

Movie 2
Flow field with six rotating cilia. Flow magnitude was normalized by the frequency f and the cilium length L.

Movie 3
Particle transport simulation. Neutrally buoyant 100 particles were randomly distributed at the initial.

Movie 4
Wall shear rate distribution during one period. The value was normalized by the frequency f .

II. NUMERICAL METHOD

A. Boundary element method

In this section, we explain a numerical method for fluid-structure interactions of immotile cilia. We assume that an
immotile cilium is immersed in an incompressible Newtonian liquid with viscosity µ and density ρ. We also assume
the cilium located on an infinite plane wall of x3 = 0. Due to small size of the cilium, the Reynolds number is much
smaller than unity (Re << 1), and the inertia effect can be negligible. The velocity field around the cilium can be
derived as:

v(x) = v∞(x)− 1

8πµ

∫
cilia

J ′(x,y) ·∆q(y) dS(y) (1)

+
1− λ

8π

∫
cilia

v(y) · T ′(x,y) · n(y) dS(y),

where v∞ is the background flow, λ(= µin/µ) is the viscosity ratio of inner and outer liquids, T ′ is the half-space
Green’s function of double layer potential, and ∆q = [σout − σin] · n is the stress jump across the thin membrane.
Since we will discuss quasi-steady deformation of immotile cilia, the viscosity ratio λ is set to unity, and the double
layer term can be neglected. J ′ is the semi-infinite Stokeslet, which is given by

J ′(x,y) = J(x,y)− J(y,yIM ) + 2y23J
D(x,yIM )− 2y3J

SD(x,yIM ), (2)

where J is the Stokeslet in an infinite domain,

Jij =
δij
r

+
rirj
r3

, (3)

r = |r|, r = x− y, yIM = (y1, y2,−y3) is a mirror image point of y. JD is the Green’s function of a source doublet,

JDij = (1− 2δj3)

(
δij
R3

− 3RiRj
R5

)
, (4)

JSD is the Green’s function of a Stokes doublet,

JSDij = (1− 2δj3)

(
δijR3 − δi3Rj + δj3Ri

R3
− 3RiRjR3

R5

)
, (5)

and R = x− yIM .
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The membrane surface S is determined by two surface curvilinear coordinates (ξ1, ξ2). The two base vectors are
then defined by

aα =
∂x

∂ξα
, (6)

and the third base vector a3 = n is the unit outward normal vector. Greek indices indicate the two curvilinear
coordinate (e.g. α = 1, or 2). The associated contravariant base vector is also defined as: aα ·aβ = δαβ . The covariant
and contravariant metric tensors are given by

aαβ = aα · aβ , aαβ = aα · aβ . (7)

A differential surface element can be expressed by

dS =
√
|aαβ |dξ1dξ2, (8)

where |aαβ | is the determinant of aαβ .
To calculate the integral equation, we use a Gaussian numerical integration scheme with a linear interpolation

function. When calculating any physical quantities inside a given element, the coordinates (ξ1, ξ2) are replaced by
the intrinsic coordinates in an isoparametric triangular element (η1, η2) with the interval of [0,1]. The integral is then
discretized by: ∫

(·)dS ≃
∑
el

∫ 1

0

∫ 1−η2

0

(·)
√
|aαβ |dη1dη2. (9)

When a observation point x is located near a source point y, a special operation should be needed to avoid large
numerical error arising from the singularity even if x does not coincide with y. For the singular elements, which share
the point x, the polar coordinates (ζ, ψ) centered at the singular point x are introduced:∫ 1

0

∫ 1−η2

0

(·)
√
|aαβ |dη1dη2 =

∫ π
2

0

∫ R(ψ)

0

(·)
√

|aαβ |ζdζdψ, (10)

where R(ψ) = 1/(sinψ+cosψ). Since the Jacobian ζ tends to zero as fast as the Euclidean distance r, the singularity
is eliminated.

B. Finite element method

As ciliary membrane thickness is small compared to its length, the membrane of immotile cilia is modelled as a
two-dimensional hyperelastic material. Let X and x(X, t) be a material point on the membrane in the reference and
deformed states, respectively. Surface deformation gradient tensor Fs is then given by

Fs = aα ⊗Aα, (11)

where Aα are the curvilinear base vector in the undeformed state. Local deformation of the membrane can be
measured by the right Cauchy-Green tensor

C = Fs
T · Fs (12)

= aαβA
α ⊗Aβ ,

or by the Green-Lagrange strain tensor

e =
1

2
(C − Is) (13)

=
1

2
(aαβ −Aαβ)A

α ⊗Aβ ,

where Is is the tangential projection operator.
Two invariants of in-plane strain tensor e can be given by

I1 = λ21 + λ22 − 2 = aαβA
αβ − 2, I2 = λ21λ

2
2 − 1 = J2

s − 1 = |aαβ ||Aαβ | − 1, (14)
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where λ1 and λ2 are the principal stretch ratios. The Jacobian Js = λ1λ2, expresses the ratio of the deformed to the
reference surface areas.
Assuming that the membrane is a two-dimensional isotropic hyperelastic material, the elastic stresses in an infinitely

thin membrane are replaced by elastic tensions. The Cauchy tension τ can be related to an elastic strain energy per
unit area ws(I1, I2):

τ =
1

Js
Fs ·

∂ws(I1, I2)

∂e
· Fs

T , (15)

or its contravariant representation is given by

ταβ =
2

Js

∂ws
∂I1

Aαβ + 2Js
∂ws
∂I2

aαβ . (16)

In order to develop the finite element formulation, the membrane mechanical problem can be stated as follow:∫
û ·∆q dS =

∫
ε̂ : τ dS, (17)

where ∆q is the stress jump across the membrane, and û, ε̂ are the virtual displacement and strain, respectively. For
the discretization, we define the shape function N on each three nodal point:

N (1) = 1− η1 − η2, (18)

N (2) = η1,

N (3) = η2.

Using the Galerkin method, the left-hand side of (17) becomes∫
û ·∆q dS =

∑
el

û
(p)
I

(∫ 1

0

∫ 1−η2

0

N (p)N (q)
√
|aαβ |dη1dη2

)
∆q

(q)
I , (19)

where subscript I indicates the I-th Cartesian component, and (p) suggests the quantity at the node p. Using a
similar procedure, the right hand side of (17) becomes∫

ε̂ : τ dS =
∑
el

∫ 1

0

∫ 1−η2

0

ε̂αβτ
αβ
√
|aαβ |dη1dη2. (20)

The tensor ε̂αβ is related to the covariant representation of û:

ε̂αβ =
1

2

(
∂ûα
∂ηβ

+
∂ûβ
∂ηα

− 2Γiαβûi

)
, (21)

where Γ is the Christoffel symbol. The covariant component of the virtual displacement must now be expressed in
terms its Cartesian components:

ûi = aIi ûI = N (p)aIi û
(p)
I , (22)

where aIi is the Cartesian component of ai. The virtual strain tensor can be written as

ε̂αβ = û
(p)
I χ

(p)I
αβ , (23)

where

χ
(p)I
αβ =

1

2

∂N (p)

∂ηβ
aIα +

1

2

∂N (p)

∂ηα
aIβ +N (p) ∂a

I
α

∂ηβ
− ΓiαβN

(p)aIi . (24)

The right hand side of (17) is then given by∫
ε̂ : τ dS =

∑
el

û
(p)
I

∫ 1

0

∫ 1−ζ1

0

χ
(p)I
αβ ταβ

√
|aαβ |dη1dη2. (25)

Using (19) and (25), we finally have the discrete equilibrium equation, which is solved by a biconjugate gradient
method.
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FIG. 1: Ideal node geometry discretized with various number of meshes.

C. Mesh convergence

We checked the mesh convergence with ideal geometry of the node (cf. Fig.1). The node surface was discretized by
80, 320, 1280, and 5120 triangle meshes, and we calculated time-space average wall shear rate (WSR). The convergence
is evaluated by

diff =
|WSR−WSR5120|

WSR5120
,

where WSR5120 is the reference wall shear rate calculated by the fine mesh (5120 triangles). The result is shown in
Fig.2. We see that the difference becomes less than 3% when we use 1280 meshes. In the main text, the node is
discretized by 3000 or more fine meshes, which should be large enough for the mesh convergence.
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FIG. 2: Mesh convergence by calculating wall shear rate.


