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Walking on microtubules: A mechanical model describing the

stepping behaviour of cytoplasmic dynein

Laurie Trott∗, Majid Hafezparast†§ and Anotida Madzvamuse‡§

1 Model for Dimerized Yeast with No Cargo

Many stepping experiments studying dynein are conducted using a dimerized form. To study

a dimerized form of dynein a shorter form of dynein’s tail is modelled by using two identical

springs connecting the tail to each of the AAA+ rings, this tail can be shortened according

to the specific dimerisation by the use of the parameter LT . It is also assumed that there is

no cargo. The Qdots in these experiments tend to be attached to the AAA+ rings themselves

and it is assumed that the effect of these Qdots on the dynamics can be ignored. The model
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equations (15)-(19) in the main paper can be modified to:

mT
d2xT
dt2

= KT

(
xB − xT − LT cos(θBT )

)
−KT

(
xT − xA − LT cos(θAT )

)
− γT dxT

dt
, (1)

mM
d2xA
dt2

= KT

(
xT − xA − LT cos(θAT )

)
−KS

(
xA − xD − LS cos(θAD)

)
− γM dxA

dt
, (2)

mM
d2xB
dt2

= KS

(
xE − xB − LS cos(θBE)

)
−KT

(
xB − xT − LT cos(θBT )

)
− γM dxB

dt
, (3)

mShD(t, xD, xE , d)
d2xD
dt2

= hD(t, xD, xE , d)
[
− γATP dxD

dt
−KATP (xD − p2k − LATP )

−KS(xD − xA − LS cos(θAD))
]
− γS dxD

dt
, (4)

mShE(t, xD, xE , d)
d2xE
dt2

= hE(t, xD, xE , d)
[
− γATP dxE

dt
−KATP (xE − p2k+1 − LATP )

−KS(xE − xB − LS cos(θBE))
]
− γS dxE

dt
, (5)

for t ∈ [0, TFinal] and with initial conditions:

xT (0) = 0, xA(0) = LT , xB(0) = LT ,

xD(0) = p0 = LT − 4, xE(0) = p1 = LT + 4.

The nondimensionalization is implemented similarly with a notable change for the time charac-

teristic:

xT = LTχT , xA = LSχA, xB = LSχB, xD = LSχD, xE = LSχE , t =
mT

γT
τ.
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Hence, the nondimensional model system is given by the following ODEs:

αT
dχT
dτ

=
( 1
ρ2

(χB + χA)− cos(θBT ) + cos(θAT )
)
− 2χT , (6)

αM
dχA
dτ

= ρ2κ2

(
χT − cos(θAT )

)
+
(
χD + cos(θAD)

)
− (κ2 + 1)χA, (7)

αM
dχB
dτ

=
(
χE − cos(θBE)

)
+ ρ2κ2

(
χB + cos(θBT )

)
− (κ2 + 1)χB, (8)

αS
dχD
dτ

= hD(τ, χD, χE , δ)
[
κ3(β2k + ρ3) +

(
χA + cos(θAD)

)
− (1 + κ3)χD

]
, (9)

αS
dχE
dτ

= hE(τ, χD, χE , δ)
[
κ3(β2k+1 + ρ3) +

(
χB + cos(θBE)

)
− (1 + κ3)χE

]
. (10)

The nondimensional parameters are given by

αT =
γ2
T

mTKT
, αM =

γMγT
mTKS

, αS =
(γATP + γS)γT

mTKS
,

ρ2 =
LT
LS

, ρ3 =
LATP
LS

,

κ2 =
KT

KS
, κ3 =

KATP

KS
,

βk =
pk
LS

, δ =
d

LS
.

See Table 1 within the main paper for dimensional parameter values, with the range of values for

d given in Table 2. The trajectories for the tail, AAA+ rings and MTBDs are similar to results

from the full model (see Figure 1). The statistics for the stepping patterns are also similar with

84.63% not-passing steps and 56.23% alternating steps (see Figure 2).

2 Model with Variable Angles

If the assumption that the angles in the model are fixed is relaxed then we must solve a two-

dimensional system. Let yC , yT , yA, yB, yD and yE represent the height of the cargo, tail,

AAA+ rings A and B, and MTBDs D and E respectively. The only forces applied vertically are
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Figure 1: (Online version in colour.) Numerical solutions to the model equations (6) - (10) with
maximum separation distance between MTBDs at 48 nm and the probability that MTBD E
steps at 50%. Plots over the whole time corresponding to (a) trajectory of the tail, (b) velocity
profile of the tail, (c) trajectories of the AAA+ rings, and (d) trajectories of the MTBDs.
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Figure 2: (Online version in colour.) Bar charts showing the mean percentage of steps: (a)
passing vs not passing and (b) alternating vs non-alternating. The data represents the results of
1000 simulations with the probability that MTBD E steps set at 50%. The maximum separation
distance is set to be 48 nm.
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the spring forces and drag, by using Hooke’s Law and Stokes’ Law respectively and equating the

mass multiplied by the acceleration to the net force we derive the following system of equations

for the cargo, tail and AAA+ rings:

mC
d2yC
dt2

= −KC(yC − yT − LC sin(θCT ))− γC dyC
dt

, (11)

mT
d2yT
dt2

= KC(yC − yT − LC sin(θCT ))−KT (yT − yB − LT sin(θBT ))

−KT (yT − yA − LT sin(θAT ))− γT dyT
dt

, (12)

mA
d2yA
dt2

= KT (yT − yA − LT sin(θAT ))−KS(yA − yD − LS sin(θAD))− γAdyA
dt

, (13)

mB
d2yB
dt2

= KT (yT − yB − LT sin(θBT ))−KS(yB − yE − LS sin(θBE))− γB dyB
dt

, (14)

and angles given by:

θCT = arctan
( yC − yT
xT − xC

)
, θAT = arctan

( yT − yA
xT − xA

)
, θBT = arctan

( yT − yB
xB − xT

)

θAD = arctan
( yA − yD
xD − xA

)
, θBE = arctan

( yB − yE
xE − xB

)

See Table 1 within the main paper for dimensional parameter values. For the MTBDs it is

assumed that they do not move away from the microtubule. This is a valid assumption as

whilst attached, the MTBDs will not move vertically and biophysical models have predicted

that the movement of the MTBDs under the action of ATP hydrolysis is one-dimensional along

the microtubule [31]. Therefore:

yD = 0, (15)

yE = 0. (16)

The vertical components are nondimensionalized as following: yC = LCψC , yT = LTψT , yA =

LSψA, yB = LSψB, yD = LSψD, yE = LSψE and t = mC
γC
τ and acceleration is assumed to be
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small. Therefore, the following system of nondimensional ODEs is obtained:

αC
dψC
dτ

= −(ψC − 1
ρ1
ψT − sin(φCT )), (17)

αT
dψT
dτ

= κ1(ρ1ψC − ψT − ρ1 sin(φCT ))− (ψT − 1
ρ2
ψB − sin(φBT ))

− (ψT − 1
ρ2
ψA − sin(φAT )), (18)

αM
dψA
dτ

= κ2(ρ2ψT − ψA − ρ2 sin(φAT ))− (ψA − ψD − sin(φAD)), (19)

αM
dψB
dτ

= κ2(ρ2ψT − ψB − ρ2 sin(φBT ))− (ψB − ψE − sin(φBE)), (20)

dψD
dτ

= 0, (21)

dψE
dτ

= 0; (22)

where

αC =
γCγC
mCKC

, αT =
γTγC
mCKT

, αM =
γMγC
mCKS

,

ρ1 =
LC
LT

, ρ2 =
LT
LS

,

κ1 =
KC

KT
, κ2 =

KT

KS
.

and the angles are given by:

φCT = arctan
(ρ1ψC − ψT
χT − ρ1χC

)
, φAT = arctan

(ρ2ψT − ψA
ρ2χT − χA

)
, φBT = arctan

(ρ2ψT − ψB
χB − ρ2χT

)
,

φAD = arctan
(ψA − ψD
χD − χA

)
, φBE = arctan

(ψB − ψE
χE − χB

)
.

Initial conditions are given by

ψC(0) =
1
ρ1
sin(φBT (0)) +

1
ρ1ρ2

sin(φBE(0)), ψT (0) = sin(φBT (0)) +
1
ρ2
sin(φBE(0)),

ψA(0) = sin(φAD(0)), ψB(0) = sin(φBE(0)), ψD(0) = 0, ψE(0) = 0.
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with angles given by:

φCT (0) = π, φAT (0) =
33π
180

, φBT (0) =
33π
180

, φAD(0) =
53π
180

, φBE(0) =
53π
180

.

The results show very similar trajectories for the cargo, tail, AAA+ rings and MTBDs for the

horizontal motion (see Figure 3). The statistics for the stepping pattern are also very similar

with 86.57% non-passing steps and 55.65% alternating steps (see Figure 4). Allowing the angles

to vary to such an extent may not be biologically realistic and so further work needs to be carried

out in order to model the changes in these angles appropriately. However, these preliminary

results do suggest that the assumption on fixed angles in the current model is unlikely to affect

our results negatively.
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Figure 3: (Online version in colour.) Numerical solutions to the model equations (17) - (22) and
(20) - (25) from the main paper, with maximum separation distance between MTBDs at 48 nm
and the probability that MTBD E steps at 50%. Plots over the whole time corresponding to (a)
trajectory of the cargo, (b) velocity profile of the cargo, (c) trajectory of the tail domain, (d)
trajectories of the AAA+ rings, and (e) trajectories of the MTBDs.
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Figure 4: (Online version in colour.) Bar charts showing the mean percentage of steps: (a)
passing vs not passing and (b) alternating vs non-alternating. The data represents the results of
1000 simulations with the probability that MTBD E steps set at 50%. The maximum separation
distance is set to be 48 nm.

3 Alternate Angles: Parallel Stalks

In order to reflect observations from structural studies, the model can be altered to ensure that

the stalks are parallel to each other (see Figure 5). The revised system of ODEs is given by:

mC
d2xC
dt2

= KC

(
xT − xC − LC

)
− FC − γC dxC

dt
, (23)

mT
d2xT
dt2

= KT

(
xB − xT − LT cos(θBT )

)
−KT

(
xT − xA − LT cos(θAT )

)

−KC

(
xT − xC − LC

)
− γT dxT

dt
, (24)

mM
d2xA
dt2

= KT

(
xT − xA − LT cos(θAT )

)
+KS

(
xD − xA − LS cos(θAD)

)
− γM dxA

dt
, (25)

mM
d2xB
dt2

= KS

(
xE − xB − LS cos(θBE)

)
−KT

(
xB − xT − LT cos(θBT )

)
− γM dxB

dt
, (26)

mShD(t, xD, xE , d)
d2xD
dt2

= hD(t, xD, xE , d)
[
− γATP dxD

dt
−KATP (xD − p2k − LATP )

−KS(xD − xA − LS cos(θAD))
]
− γS dxD

dt
, (27)

mShE(t, xD, xE , d)
d2xE
dt2

= hE(t, xD, xE , d)
[
− γATP dxE

dt
−KATP (xE − p2k+1 − LATP )

−KS(xE − xB − LS cos(θBE))
]
− γS dxE

dt
, (28)
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Figure 5: (Online version in colour.) A schematic diagram of the mechanical model with stalk
angles parallel (adapted from [29]). The cargo is modelled as a sphere (grey) and regulators
of binding to dynein are modelled as part of this cargo. The binding of the cargo to the tail
domain is modelled by a spring. The tail of dynein is modelled by a sphere (blue) connected
by two springs to the AAA+ rings. The AAA+ rings, depicted in green, and the MTBDs,
depicted in yellow and orange, are modelled as spheres. The stalks are modelled as springs. The
microtubule is modelled as a line (red).

for t ∈ [0, TFinal] with dimensional parameter values given in Table 1 and the ranges or distribu-

tions for the stochastic parameters given in Table 2. The initial conditions can also be altered

to reflect this new orientation:





xC(0) = 0,

xT (0) = LC ,

xA(0) = LC + LT cos(θAT )− 8,

xB(0) = LC + LT cos(θAT ),

xD(0) = p0 = LC + LT cos(θAT ) + LS cos(θBE)− 8,

xE(0) = p1 = LC + LT cos(θAT ) + LS cos(θBE).

(29)
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The system can then be solved similarly to the original model, see Figure 6 for example profiles

with PD = PE = 50% and Figure 7 for example profiles with PD = 70% and PE = 30%. The

results are the same as for the original model, with the percentage of not passing steps 84.57%

and the percentage of alternating steps: 56.57% when PD = PE = 50%, and the percentage of

not passing steps 84.26% and the percentage of alternating steps 74.06% when PD = 70% and

PE = 30%.
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Figure 6: (Online version in colour.) Numerical solutions to the revised model with maximum
separation between MTBDs at 48 nm and the probability that MTBD E steps at 50%. Plots
over the whole time corresponding to (a) trajectory of the cargo, (b) velocity profile of the
cargo, (c) trajectory of the tail domain, (d) trajectories of the AAA+ rings, (e) trajectories of
the MTBDs, and (f) trajectory of the tail domain for a representative subinterval.
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Figure 7: (Online version in colour.) Numerical solutions to the revised model with maximum
separation between MTBDs at 48 nm and the probability that MTBD E steps set at 70%
if the previous step was taken by MTBD D, and 30% otherwise. Plots over the whole time
corresponding to (a) trajectory of the cargo, (b) velocity profile of the cargo, (c) trajectory of
the tail domain, (d) trajectories of the AAA+ rings, and (e) trajectories of the MTBDs.

4 Independent Stepping

4.1 Nondimensionalization

We take a multiscale approach when nondimensionalizing the model, using one fast timescale for

the stepping and one slow timescale for the dwelling. For the dwelling interval, we take tc = µ
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to obtain the following system:

dχC
dτ1

= µ
[
α1

( 1
ρ1
χT − 1

)
− λ2 − α1χC

]
, (30)

dχT
dτ1

= µ
[
α2

( 1
ρ2

(χA + χB) + cos(θAT )− cos(θBT )
)

+ α3ρ1(χC + 1)− (2α2 + α3)χT
]
, (31)

dχA
dτ1

= µ
[
α4ρ2(χT − cos(θAT )) + α5(χD + cos(θAD))− (α4 + α5)χA

]
, (32)

dχB
dτ1

= µ
[
α5(χE − cos(θBE)) + α4ρ2(χT + cos(θBT ))− (α4 + α5)

]
, (33)

dχD
dτ1

= 0, (34)

dχE
dτ1

= 0, (35)

for τ1 ∈ [τ1,k, τ1,k+1] where τ1,k+1 = τ1,k + 1
µ min{qij : j ∈ {D,E}}. For the stepping intervals we

take tc = mC
γC

and the system of ODEs is given as:

αC
dχC
dτ2

=
( 1
ρ1
χT − 1

)
− λ1 − χC , (36)

αT
dχT
dτ2

=
( 1
ρ2

(χB + χA)− cos(θBT ) + cos(θAT )
)

+ ρ1κ1(χC + 1)− (2 + κ1)χT , (37)

αM
dχA
dτ2

= ρ2κ2

(
χT − cos(θAT )

)
+
(
χD + cos(θAD)

)
− (κ2 + 1)χA, (38)

αM
dχB
dτ2

=
(
χE − cos(θBE)

)
+ ρ2κ2

(
χB + cos(θBT )

)
− (κ2 + 1)χB, (39)

αS
dχD
dτ2

= hq,D(τ,
γC
mC

qD)
[
κ3(β2k + ρ3) +

(
χA + cos(θAD)

)
− (1 + κ3)χD

]
, (40)

αS
dχE
dτ2

= hq,E(τ,
γC
mC

qE)
[
κ3(β2k+1 + ρ3) +

(
χB + cos(θBE)

)
− (1 + κ3)χE

]
. (41)

for τ2 ∈ [τ2,k, τ2,k+1] where τ2,k = γC
mC

µτ1,k+1.
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4.2 Stochastic Stepping

The initial dwell times q1
D and q1

E are generated and the system is set to dwell for τ ∈
[0, 1

µ min{q1
D, q

1
E}], hence the system is solved for the initial conditions:

χC(0) = 0, χT (0) = ρ1, χA(0) = ρ2 + ρ1ρ2, χB(0) = ρ2 + ρ1ρ2,

χD(0) = β0, χE(0) = β1.

If q1
D < q1

E the system is then solved for MTBD D unbound for τ ∈ [ γCmC q
1
D,min{ γCmC q1

E ,
γC
mC

q1
D +

τstep}] where we take τStep = 106. This is necessary as the ODE system will become stiff if the

timescales are too large. The initial conditions are taken to be those at the end of the dwelling

interval:

χC(τ2,k) = χC(τ1,k+1), χT (τ2,k) = χT (τ1,k+1), χA(τ2,k) = χA(τ1,k+1),

χB(τ2,k) = χB(τ1,k+1), χD(τ2,k) = χD(τ1,k+1), χE(τ2,k) = χE(τ1,k+1).

for τ1,k+1 = 1
µ min{q1

D, q
1
E} and τ2,k = γC

mC
q1
D. The solution is then truncated to the point when

the MTBD reaches the binding site, time tbind, a new dwell time q2
D is generated and we compare

this dwell time with q1
E − tbind. If the MTBD does not reach the binding site within the time

interval, i.e. the other MTBD detaches early, then the simulation is ended. The system is solved

similarly for the case q1
D > q1

E but with MTBD E unbound and τ2,k = γC
mC

q1
E . This process is

repeated until there have been N = 100 steps or both MTBDs have detached.

5 Dwelling, Backwards Stepping and Variable Step Size

Consider t ∈ [0, TF + QF ] with TF > 0 and QF =
∑N

k=1 q1,k. Here, N represents the total

number of steps, TF the total time spent stepping and QF the total time spent dwelling with
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q1,k the length of individual intervals of dwelling. Let q1 = {q1,k}k=1:N be a random vector

where q1,k is from the exponential distribution with mean µ. Furthermore, let q2 = {q2,k}k=1:N ,

q3 = {q3,k}k=1:N be random vectors where q2,k, q3,k are from the uniform distribution on (0, 1);

these will determine the choice of AAA+ ring and the direction of stepping respectively. We

continue to use a fixed time interval for stepping, TStep, giving TF = NTStep.

For t ∈ [ti, ti+1], where ti+1 = ti+ TF
N and given that MTBD j stepped previously, if q2,k < Pj

then MTBD E is set to be in the unbound state and MTBD D is set to be in the bound state.

Otherwise we assume that MTBD D is in the unbound state and MTBD E in the bound state.

This is described by the step functions h2,D and h2,E :

h2,E(t) =





1 if q2,k < Pj ,

0 otherwise;
(42)

and similarly

h2,D(t) = 1− h2,E(t). (43)

If the unbound MTBD is ahead of the other and the maximum separation distance has been

reached or if q3,k < PBack the unbound MTBD is set to move backwards; otherwise it steps

forwards. This can be defined by the step function:

gD(xD, xE , t, d, n) =





−n if xD − xE > d or q3,k < PBack

n otherwise
(44)

where n is a parameter modulating the step size. The equivalent function for MTBD E can be

defined similarly with

gE(xD, xE , t, d, n) =





−n if xE − xD > d or q3,k < PBack

n otherwise
(45)
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Then, given q1,k the system is set to dwell for t ∈ [ti+1, ti+1 + q1,k], i.e. both MTBDs are set to

be in the bound state. Here, we can define a step function hq(t, ti+1) given by:

hq(t, ti+1) =





1 if t ≤ ti+1

0 otherwise;
(46)

for t ∈ [ti, ti+1 + q1,k] with k = 1, 2, ..., N . Define h3,j(t) = hq(t, ti+1)h2,j(t) for j = D,E. The

system of ODEs is therefore given by:

mC
d2xC
dt2

= KC

(
xT − xC − LC

)
− FC − γC dxC

dt
, (47)

mT
d2xT
dt2

= KT

(
xB − xT − LT cos(θBT )

)
−KT

(
xT − xA − LT cos(θAT )

)

−KC

(
xT − xC − LC

)
− γT dxT

dt
, (48)

mM
d2xA
dt2

= KT

(
xT − xA − LT cos(θAT )

)
−KS

(
xA − xD − LS cos(θAD)

)
− γM dxA

dt
, (49)

mM
d2xB
dt2

= KS

(
xE − xB − LS cos(θBE)

)
−KT

(
xB − xT − LT cos(θBT )

)
− γM dxB

dt
, (50)

mSh3,D(t)
d2xD
dt2

= h3,D(t)
[
− γATP dxD

dt
−KATP (xD − pD(t)− gD(xD, xE , t, d, n)LATP )

−KS(xD − xA − LS cos(θAD))
]
− γS dxD

dt
, (51)

mSh3,E(t)
d2xE
dt2

= h3,E(t)
[
− γATP dxE

dt
−KATP (xE − pE(t)− gE(xD, xE , t, d, n)LATP )

−KS(xE − xB − LS cos(θBE))
]
− γS dxE

dt
, (52)

for t ∈ [0, TF + QF ]. Here, pD(t) and pE(t) represent the binding sites for MTBDs D and E

respectively, where pD(0) = p0, pE(0) = p1 and the subsequent choice of binding site will depend

on the previous step size and direction of the respective MTBD; i.e. if MTBD D steps at time

ti with a step of ±nLATP then the new binding site is taken to be pD(ti+1) = pD(ti)± nLATP .

See Table 1 in the main paper for dimensional parameter values and Table 2 for the ranges

and distributions of stochastic parameters. The system is then nondimensionalized similarly to

Section 4.1 above.
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5.1 Stochastic Stepping

For the initial step MTBD D is assumed to be in the unbound state and MTBD E is in an

bound state and the system is solved for the initial conditions:

χC(0) = 0, χT (0) = ρ1, χA(0) = ρ2 + ρ1ρ2, χB(0) = ρ2 + ρ1ρ2,

χD(0) = β0, χE(0) = β1.

For each subsequent step a random number q1,k is generated from the exponential distribution

with mean µ and the system of ODEs is solved for τ ∈ [τi+1, τi+2] in the dwelling state where

τi+2 = τi+1 + 1
µq1,k. Initial conditions are given by the values from the previous simulation:

χC(τi+1), χT (τi+1), χA(τi+1), χB(τi+1), χD(τi+1) and χE(τi+1).

Random numbers q2,k, q3,k are then generated from the uniform distribution on (0, 1) to deter-

mine which head domain steps and in which direction. We take n from a Poisson distribution

about 2 for the forward steps and from the Poisson distribution about 1 for the backward steps.

The resulting ODE system is solved for τ ∈ [τi+2, τi+3], where τi+3 = τi+2 +τstep, with the initial

conditions taken from the end values of the dwelling simulation:

χC(τi+2), χT (τi+2), χA(τi+2), χB(τi+2), χD(τi+2) and χE(τi+2).

17



6 MTBDs vs Rings

The behaviour of the MTBDs and the AAA+ rings demonstrate some differences with regards

to not passing steps, however these only become significant for small values of the maximum

separation distance (see Table 1) and do not depend on the stepping probabilities (see Table

2); there is no difference for alternating steps. For the model with large scale dwelling, variable

step sizes and backwards stepping, there is a 4% difference in not passing steps with 82.3% for

the MTBDs and 86.8% for the AAA+ Rings.

Table 1: Mean percentage of not passing steps given a range of values for the maximum sepa-
ration distance d (nm). The data represents the results of 100 simulations with the probability
that MTBD E steps set at 74% if MTBD D stepped previously and 26% otherwise. The prob-
ability of random backwards stepping is set to be 10% and the mean dwell time is taken to be
2 ns. If x% of steps are not passing then (100 − x)% of steps are passing. Similarly, if x% of
steps are alternating then (100− x)% of steps are not alternating.
d (nm) MTBDs (%) AAA+ Rings(%)

8 49.36 95.43
16 53.57 81.25
24 68.05 79.35
32 75.45 76.32
40 80.85 84.15
48 81.68 83.86
56 84.50 89.50
64 85.72 87.62
72 85.89 89.57
80 87.29 89.00
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Table 2: Mean percentage of not passing steps given a range of values for the stepping prob-
abilities of MTBD E. The data represents the results of 100 simulations with the maximum
separation distance set to be 56 nm. The probability of random backwards stepping is set to be
10% and the mean dwell time is taken to be 2 ns. Observe that the % of not passing steps is
independent of the probabilities PD and PE while the % of alternating steps is closely related.
If x% of steps are not passing then (100−x)% of steps are passing. Similarly, if x% of steps are
alternating then (100− x)% of steps are not alternating.
PD (%) PE (%) MTBDs AAA+ Rings

20 80 88.00 89.02
30 70 87.13 88.82
40 60 87.29 89.53
50 50 86.23 87.02
60 40 85.87 87.26
70 30 84.17 86.44
80 20 84.81 86.84
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