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Bayesian Inference of Parameters of Haemagglutinin Inhibition (HI) titre 

Typically, the measured HI  titre of a virus X relative to virus Y in an assay, denoted by HXY, is as 

follows [1]:  

xXYYXY JKA=H            S1 

where AY is the concentration of antibodies found in Y-derived serum, KXY is the average affinity of 

those antibodies for virus X, and JX is a dimensionless quantity that account for the non-antigenic 

factors that affected the HI titre, HXY. This quantity basically depends on the avidity of virus for red 

blood cells, concentration of virus and red blood cells. 

 

A natural way to decouple both antigenic and non-antigenic parameters of the HI titre is to take the 

logarithmic transformation of the titre. The result of such transformation is: 

 

       xXYYXY J+K+A=H loglogloglog .        S2 

 

Thus, in subsequent analysis, each of these variables referred to is a log-transformed variable. The 

log-transformed HI titres of the currently curated data are normally distributed by the shapiro test 

(p=0.07). Therefore taking that the HXY is normally distributed with mean AY + KXY + JX and 

defining its variance as the fraction 
τ

1
 (where τ is a precision parameter), we had the likelihood of 

the entire titres as: 
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where m is the number of viruses, n is the number of sera produced in the HI assays, and H 

represents the collection of the entire HI titres. However, we expect the sampling distribution of the 

mean, AY + KXY + JX to be normally distributed (for large sample size) while the quantity τ 

(precision) is gamma distributed [2].  

 

More formally, we make the following definitions of density functions: 

1. 









A

A
Y

τ
,μNA

1
, where the hyperparameter μA is the mean of AY and its prior density is also 

normally distributed with mean μ'A  and variance 1/τ'A which are known. The prior density of the 

hyper parameter τA is gamma distributed with shape Aα  and rate Aβ which are also known. 

2. 









K

K
XY

τ
,μNK

1
, where the parameter μK is the mean of KXY and its prior density is also 

normally distributed with mean μ'K  and variance 1/τ'K  which are known. The prior density of the 

parameter τK  is gamma distributed with the shape Kα and rate Kβ which are also known. 

3. 
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1
, where the parameter μJ is the mean of JX and its prior density is also normally 

distributed with mean μ'J  and variance 1/τ'J  which are known. The prior density of the hyper 

parameter τJ  is gamma distributed with the shape Jα  and rate Jβ . 

4.   βα,Gammaτ  ,  where both shape α  and rate β  are known variables which are expected to 

be affected by the precisions of the estimates of AY , KXY and JX. These are reflected in the derivation 

of the full conditional distribution of τ and the other precision parameters (τA, τK and τJ). 

 

Note that if random a variable X is normally distributed with mean μ and variance 2σ , then its 

probability distribution function is given by: 
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Also, if a random variable X follows a gamma distribution, then the probability distribution function 

of X is given by: 

 
 

00,01 >β>α,>x,ex
αΓ

β
=xf βxα

α
 ,        S5 

where 0>x , the shape 0>α  and the rate 0>β .  

 

For an entire collection of HI titres, H, it follows from applying the Bayes’ Theorem that the full 

posterior density of all the parameters can be expressed as: 

     θfθ|HfαH|θf           S6 

where  τ,,μ,μ,μ,J,K,A=θ JKA
XXYY and H is the collection of the entire HI titres. Note that 

 θ|Hf  is the likelihood and  θf  is the prior. 

 

Therefore, expanding the expression to the right hand side of S6 results in the following: 
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From S7, it can be readily shown that the full conditional distribution of all the parameters,θ , are 

summarized as follows:  
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1.   
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1
∼ , where 

A

AA
A

τ+mτ

τμ+S
=θ 1 , AA τ+mτ=λ  and 

   XXYXY JKHτ=S1 . 

 

2.   
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KK
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=θ 2 , KK τ+τ=λ  and 

 XYXY JAHτ=S 2 . 

 

3.   
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, where 

J

JJ
J

τ+nτ

τμ+S
=θ 3 , JJ τ+nτ=λ  and  

   XYYXY KAHτ=S3 . 

 

4.    rs,Gamma=rs,|τf , where the shape, α+mn=s
2

1
 and the rate, 

  β+JKAH=r XXYYXY 
2

2

1
. 

 

5.  
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8.    AAAAA r,sGammas,r|τf ∼ , where the shape, AA α+n=s
2

1
 and the rate 

  AA
Y

A β+μA=r  
2

2

1
. 

 

9.    KKKKK r,sGammas,r|τf ∼ , where the shape, KK α+mn=s
2

1
 and the rate, 

  KK
XY
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. 

 

10.    JJJJJ r,sGammas,r|τf ∼ , where the shape, JJ α+m=s
2

1
 and the rate, 

  JJ
X

J β+μJ=r  
2

2

1
. 

 

The superscripts and subscripts of variables denote value of a variable for a particular virus. For 

instance, AY denotes the concentration of antibodies derived against virus Y. Additional details of 

Bayesian inferences are discussed in the literature [3,4]. 

 

Sampling the values of Parameters  

Since the full conditionals have been determined, we proceed to construct Markov chain samples 

with the Gipps sampler [5,6]. We expect the samples to be acceptable since they are produced from 

the entire domain of the posterior distribution [7]. In addition, autocorrelation function plots of the 

samples of each parameter further supported the independence of the samples of estimates (Figures 

S1-S3). Given independent samples, large samples of size 100,000 were selected with 2% as burn-

in [8]. Moreover, no significant differences between estimates of different simulations with the 
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chosen sample size were observed which motivates the choice of the sample size. We obtained the 

mean of the samples as the estimate of the HI titre parameters.  

 

In order to guide the sampling within acceptable range of the HI titres, initial values for the priors 

were searched from the literature. In particular, Ndifon and coworkers [9] estimated that high 

concentrations of antibodies in antisera from influenza virus-infected animals are of the order of 

1.67nM. Furthermore, the average affinities of such antibodies were also found to range from 6M 

per M to 1G per M for influenza A (H3N2) subtypes [1]. On the other hand, initial values of non 

antigenic variables were estimated from the viral avidities (up to 50ug/mL RDE) as reported in [10]. 

This is because the avidity of virus for red cells mainly composes the non-antigenic variables [10]. 

More specifically, utilizing the prior knowledge about the HI titre parameters in the literature, initial 

values of the parameters within the expected ranges were randomly generated from the log-normal 

distribution such that the means of the samples were similar to the estimates reported in the earlier 

studies. This log-normal distribution was selected since log-transforming such samples will result in 

a normal distribution required for the sampling and the inference as indicated in Equation S2. 

Furthermore, the estimates obtained in this manner compared favourably well with the literature 

when the HI titre data were compared with the titre from the aggregation of the estimates obtained 

by our methods described herein. In particular, the Mann-Whitney test (with 0.05 level of 

significance) showed that there were no statistically significant differences between the two titres (p 

= 0.91). R codes were written to perform all simulations.  
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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

Figure S1: A sample of autocorrelation function (ACF) of Markov chain samples of concentration 

of an antibody.  

 

 

 

 

 

 

 

 

 

 

 

Figure S2: A sample autocorrelation function (ACF) of Markov chain samples of Affinities of an 

antibody for influenza A (H3N2) virus. 
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Figure S3: A sample autocorrelation function (ACF) of Markov chain samples of the non-antigenic 

variables associated an influenza A (H3N2) virus. 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Sources of red blood cells in HI titres are distinguished by non-antigenic variables and 

Years. Non-antigenic variables are log-transformed averages of Bayesian inference estimates. 
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