

$$
N=5 \times 10^{5}
$$

Figure S1. Effects of recombination on the establishment of inversions that capture two locally adapted alleles: additional simulation results. See the Fig. 1 legend for additional details. Here we present additional results comparing analytic approximations of establishment probabilities (dashed line, based on eqs. ($5 \mathrm{a}-5 \mathrm{~b}$), with $m_{f}=m_{m}$) and stochastic simulations for inversion establishment on the X (red symbols) and autosomes (grey symbols). Simulations were carried out in a Wright-Fisher population with effective population size of $N=30,000$ (panels A-I) and N
$=500,000$ (panels J-R), and for three dominance scenarios for the locally adaptive alleles $(h=0$ in the left-hand column; $h=1 / 2$ for the middle column; $h=1$ for the right-hand column). For each combination of h and N, we performed simulations corresponding to equal (circles), femalelimited (squares), and female-limited (diamonds) parameterizations of migration rate (m_{f}, m_{m}), selection (s_{f}, s_{m}), and recombination rate (r_{f}, r_{m}, with no X-linked recombination in males). The sex-averaged rate of migration and strength of selection were held constant across simulations. For simplicity, we present results in which we explore the effects of sex-bias in only one of the three parameters at a time. For simulations using $N=30,000$, we set $\bar{m}=\left(m_{f}+m_{m}\right) / 2=$ 0.002 and $\bar{s}=\left(s_{f}+s_{m}\right) / 2=0.05$. For simulations using $N=500,000$, we set $\bar{m}=\left(m_{f}+\right.$ $\left.m_{m}\right) / 2=0.0002$ and $\bar{s}=\left(s_{f}+s_{m}\right) / 2=0.005$. Hence, panels A-C and J-L explore effects of equal migration (where $m_{f}=m_{m}=\bar{m}$), female-limited migration ($m_{m}=0 ; m_{f}=2 \bar{m}$), and malelimited migration ($m_{f}=0 ; m_{m}=2 \bar{m}$), with equal selection and recombination between sexes ($s_{f}=$ $\left.s_{m}=\bar{s} ; r_{f}=r_{m}=r\right)$. Panels D-F and M-O show results explore effects of equal selection $\left(s_{f}=s_{m}=\right.$ $\bar{s})$, female-limited selection $\left(s_{m}=0 ; s_{f}=2 \bar{s}\right)$, and male-limited selection $\left(s_{f}=0 ; s_{m}=2 \bar{s}\right)$, with equal migration and recombination between sexes $\left(m_{f}=m_{m}=\bar{m} ; r_{f}=r_{m}=r\right)$. Panels G-I and $\mathrm{P}-\mathrm{R}$ explore effects of equal recombination $\left(r_{f}=r_{m}=r\right)$, female-limited recombination $\left(r_{m}=0 ; r_{f}=r\right)$, and male-limited recombination $\left(r_{f}=0 ; r_{m}=r\right)$, with equal migration and selection between sexes ($m_{f}=m_{m}=\bar{m} ; s_{f}=s_{m}=\bar{s}$). The j in the establishment probability, Π_{j}, refers to the mode of inheritance $(j=\{\mathrm{A}, \mathrm{X}\})$. Each data point shows the fraction of 10^{6} single-copy inversions that eventually become established in the population. Analytical, numerical and simulation results are based on the two-locus model of local adaptation in which inversions capture locally adaptive alleles at both loci.

$$
N=3 \times 10^{4}
$$

Recombination relative to selection (r / s)

$$
N=5 \times 10^{5}
$$

B

Recombination relative to selection (r / s)

Figure S2. Long-run evolutionary dynamics of inversions. Instead of using frequency thresholds to delineate inversions that successfully invade the population, we ran forward simulations for 4 N generations - a sufficient number of generations for the population to reach migration-selectiondrift equilibrium. Data points show the results for 5×10^{4} replicate simulations, each of which was run until a new inversion was lost or $4 N$ generations had passed. Panels A and B show the proportion of inversions that are not lost from the population. Panels C and D show the mean frequency, at generation $4 N$, of inversions that became established in the population We present
results for Wright-Fisher populations of size $N=30,000$ with $s=s_{f}=s_{m}=0.05, m_{f}=m_{m}=0.002$ (panels A, C) and $N=500,000$ with $s=s_{f}=s_{m}=0.005, m_{f}=m_{m}=0.0002$ (panels B, D), with recombination rates between the sexes ($r=r_{f}=r_{m}$, and no X-linked recombination in males). Fitness effects of locally adaptive alleles are additive $\left(h=h f=h_{m}=0.5\right)$. The dashed line in Panels A and B show the analytic approximation for inversion establishment probability, based on eqs. (5a-5b), with $m_{f}=m_{m}$. Note, in Panels C-D, that the simulation results show that the average frequency of established X-linked inversions is slightly higher than the average frequency for autosomal inversions, though inversions are nearly fixed under both modes of inheritance.

