



 $N = 3 \times 10^4$

Figure S1. Effects of recombination on the establishment of inversions that capture two locally adapted alleles: additional simulation results. See the Fig. 1 legend for additional details. Here we present additional results comparing analytic approximations of establishment probabilities (dashed line, based on eqs. (5a-5b), with $m_f = m_m$) and stochastic simulations for inversion establishment on the X (red symbols) and autosomes (grey symbols). Simulations were carried out in a Wright-Fisher population with effective population size of N = 30,000 (panels A-I) and N

 $N = 5 imes 10^5$

= 500,000 (panels J-R), and for three dominance scenarios for the locally adaptive alleles (h = 0in the left-hand column; $h = \frac{1}{2}$ for the middle column; h = 1 for the right-hand column). For each combination of h and N, we performed simulations corresponding to equal (circles), femalelimited (squares), and female-limited (diamonds) parameterizations of migration rate (m_f, m_m) , selection (s_f, s_m) , and recombination rate $(r_f, r_m, with no X-linked recombination in males)$. The sex-averaged rate of migration and strength of selection were held constant across simulations. For simplicity, we present results in which we explore the effects of sex-bias in only one of the three parameters at a time. For simulations using N = 30,000, we set $\overline{m} = (m_f + m_m)/2 =$ 0.002 and $\bar{s} = (s_f + s_m)/2 = 0.05$. For simulations using N = 500,000, we set $\bar{m} = (m_f + m_f)/2$ m_m)/2 = 0.0002 and $\bar{s} = (s_f + s_m)/2 = 0.005$. Hence, panels A–C and J–L explore effects of equal migration (where $m_f = m_m = \overline{m}$), female-limited migration ($m_m = 0$; $m_f = 2\overline{m}$), and malelimited migration ($m_f = 0$; $m_m = 2\overline{m}$), with equal selection and recombination between sexes ($s_f =$ $s_m = \bar{s}$; $r_f = r_m = r$). Panels D–F and M–O show results explore effects of equal selection ($s_f = s_m = r$). \bar{s}), female-limited selection ($s_m = 0$; $s_f = 2\bar{s}$), and male-limited selection ($s_f = 0$; $s_m = 2\bar{s}$), with equal migration and recombination between sexes ($m_f = m_m = \overline{m}$; $r_f = r_m = r$). Panels G–I and P–R explore effects of equal recombination ($r_f = r_m = r$), female-limited recombination ($r_m = 0$; $r_f = r$), and male-limited recombination ($r_f = 0$; $r_m = r$), with equal migration and selection between sexes $(m_f = m_m = \overline{m}; s_f = s_m = \overline{s})$. The *j* in the establishment probability, Π_i , refers to the mode of inheritance ($j = \{A, X\}$). Each data point shows the fraction of 10⁶ single-copy inversions that eventually become established in the population. Analytical, numerical and simulation results are based on the two-locus model of local adaptation in which inversions capture locally adaptive alleles at both loci.

Figure S2. Long-run evolutionary dynamics of inversions. Instead of using frequency thresholds to delineate inversions that successfully invade the population, we ran forward simulations for 4N generations – a sufficient number of generations for the population to reach migration-selection-drift equilibrium. Data points show the results for 5×10^4 replicate simulations, each of which was run until a new inversion was lost or 4N generations had passed. Panels A and B show the proportion of inversions that are not lost from the population. Panels C and D show the mean frequency, at generation 4N, of inversions that became established in the population We present

results for Wright-Fisher populations of size N = 30,000 with $s = s_f = s_m = 0.05$, $m_f = m_m = 0.002$ (panels A, C) and N = 500,000 with $s = s_f = s_m = 0.005$, $m_f = m_m = 0.0002$ (panels B, D), with recombination rates between the sexes ($r = r_f = r_m$, and no X-linked recombination in males). Fitness effects of locally adaptive alleles are additive ($h = hf = h_m = 0.5$). The dashed line in Panels A and B show the analytic approximation for inversion establishment probability, based on eqs. (5a-5b), with $m_f = m_m$. Note, in Panels C-D, that the simulation results show that the average frequency of established X-linked inversions is slightly higher than the average frequency for autosomal inversions, though inversions are nearly fixed under both modes of inheritance.