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Model Solution

The evolution of the distribution for the position of an individual, P (x, t), is governed by

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
+ V

∂P (x, t)

∂x
, (1)

where D is the diffusivity of the particle and V is the velocity of the particle. The values of these parameters
arise from the Stokes-Einstein equation and Stokes’ law, respectively. Specifically, the diffusivity is given by

D =
kbT

3πηd
, (2)

where kb is the Boltzmann constant, T is the temperature of the fluid, η is the dynamic viscosity of the fluid
and d is the diameter of the particle. The velocity is given by

V =
g(ρ− ρf )d2

18η
, (3)

where g is the gravitational acceleration constant, ρ is the density of the particle and ρf is the density of
the fluid. The boundary conditions corresponding to the experimental geometry of interest are

D
∂P (x, t)

∂x

∣∣∣∣
x=L

+ V P (L, t) = 0, (4)

and

D
∂P (x, t)

∂x

∣∣∣∣
x=0

+ V P (0, t) = αV P (0, t), (5)

where α ≥ 0 represents the ability of the nanoparticles to associate with the cells. For a single nanoparticle,
we assume a point source initial condition at x = x0,

P (x, 0) = δ(x− x0). (6)

To solve Equation (1) subject to Equations (4)-(6) we first non-dimensionalise the system by introducing
the variables

χ =
x

L
, Pe =

V L

D
, and τ =

tV

L
, (7)

where Pe is the Peclet number. The model therefore becomes

P (χ, τ)

∂τ
=

1

Pe

∂2P (χ, τ)

∂χ2
+
∂P (χ, τ)

∂χ
, (8)
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subject to the initial condition

P (χ, 0) = δ
(
χ− x0

L

)
, (9)

and the boundary conditions
∂P (χ, τ)

∂χ

∣∣∣∣
χ=1

+ PeP (1, τ) = 0, (10)

and
∂P (χ, τ)

∂χ

∣∣∣∣
χ=0

+ Pe(1− α)P (0, τ) = 0. (11)

We next introduce the new variable

Q(χ, τ) = P (χ, τ) exp

(
Pe

4
τ +

Pe

2
χ

)
. (12)

Equations (8)-(11) can be expressed in terms of this new variable, which gives rise to the governing equation

∂Q(χ, τ)

∂τ
=

1

Pe

∂2Q(χ, τ)

∂χ2
, (13)

with initial condition

Q(χ, 0) = exp

(
Pe

2
χ

)
δ
(
χ− x0

L

)
, (14)

and the boundary conditions
∂Q(χ, τ)

∂χ

∣∣∣∣
χ=1

+
Pe

2
Q(1, τ) = 0, (15)

and
∂Q(χ, τ)

∂χ

∣∣∣∣
χ=0

+
Pe

2
(1− 2α)Q(0, τ) = 0. (16)

To solve this, we follow a standard separation of variables approach and assume that functions X(χ) and
T (τ) exist such that

Q(χ, τ) = X(χ)T (τ). (17)

Equation (13) therefore implies that

X ′′(χ)

X(χ)
= Pe

T ′(τ)

T (τ)
= −λ2, (18)

where λ2 are the eigenvalues of the system. Note that the dash refers to an ordinary derivative. The solution
for T (τ) is straightforward and is

T (τ) = exp

(
−λ2

Pe
τ

)
. (19)

The solution for X(χ) depends on the sign of the eigenvalues. Interestingly, depending on the value of α,
the number of non-positive eigenvalues change. Assuming λ2 = 0,

X(χ) = A(χ) +B. (20)

Upon substitution into the boundary conditions, it can be seen that there are no non-trivial solutions that
satisfy the boundary conditions unless

Pe(1− 2α)− 4α = 0, (21)

in which case there is a single non-trivial solution and hence the leading eigenvalue is zero. If we instead
assume λ2 < 0,

X(χ) = C1 cosh(λχ) + C2 sinh(λχ). (22)

Again, there are no non-trivial solutions that satisfy the boundary conditions unless

Pe(1− 2α)− 4α > 0, (23)
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in which case there is one non-trivial solution, which gives rise to a negative leading eigenvalue that can be
obtained from the solution to

(Pe2(1− 2α)− 4λ2) sinh(λ)− 4λPeα cosh(λ) = 0. (24)

Finally, if λ2 > 0,
X(χ) = D1 cos(λχ) +D2 sin(λχ). (25)

There are an infinite number of eigenvalues that satisfy the boundary conditions for this form of the solution,
and the eigenvalues can be obtained from the solutions to

(Pe2(1− 2α) + 4λ2) sin(λ)− 4λPeα cos(λ) = 0. (26)

There is exactly one root of Equation (26), λn, on each interval [nπ, (n+ 1)π], except for the case where

Pe(1− 2α)− 4α ≥ 0, (27)

where the leading eigenvalue is non-positive as discussed previously, and hence (26) has no solution on [0, π].
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Hence there are three solution regimes for the model depending on the values of α and Pe:
If Pe(1− 2α)− 4α < 0,

Q(χ, τ) =
∞∑
n=0

An

[
sin(λnχ)− 2λn

Pe(1− 2α)
cos(λnχ)

]
exp

(
−λ2n
Pe

τ

)
. (28)

If Pe(1− 2α)− 4α = 0,

Q(χ, τ) = A0(1− 2αχ) +
∞∑
n=1

An

[
sin(λnχ)− 2λn

Pe(1− 2α)
cos(λnχ)

]
exp

(
−λ2n
Pe

τ

)
. (29)

If Pe(1− 2α)− 4α = 0,

Q(χ, τ) = A0

[
sinh(λ0χ)− 2λ0

Pe(1− 2α)
cosh(λ0χ)

]
exp

(
λ20
Pe
τ

)
+

∞∑
n=1

An

[
sin(λnχ)− 2λn

Pe(1− 2α)
cos(λnχ)

]
exp

(
−λ2n
Pe

τ

)
. (30)

To obtain the values for the coefficients An we use generalised Fourier Series and the initial condition. That
is,

An =

∫ 1
0 Q(χ, 0)

[
sin(λnχ)− 2λn

Pe(1−2α) cos(λnχ)
]
dχ∫ 1

0

[
sin(λnχ)− 2λn

Pe(1−2α) cos(λnχ)
]2

dχ

=
4λnPe2(1− 2α)2 exp

(
Pex0
2L

) [
sin
(
λn

x0
L

)
− 2λn

Pe(1−2α) cos
(
λn

x0
L

)]
Pe2(1− 2α)2(2λn − sin(2λn)) + 4λnPe(1− 2α)(cos(2λn)− 1) + 4λn(2λ2n + λn sin(2λn))

. (31)

For the case where Pe(1− 2α)− 4α = 0,

A0 =

∫ 1
0 Q(χ, 0) [1− 2αχ] dχ∫ 1

0 [1− 2αχ]2 dχ

=
exp

(
Pex0
2L

) (
1− 2αx0

L

)
1− 2α+ 4α2

3

. (32)

For the case where Pe(1− 2α)− 4α > 0,

A0 =

∫ 1
0 Q(χ, 0)

[
sinh(λ0χ)− 2λ0

Pe(1−2α) cosh(λ0χ)
]
dχ∫ 1

0

[
sinh(λ0χ)− 2λ0

Pe(1−2α) cosh(λ0χ)
]2

dχ

=
4λ0Pe2(1− 2α)2 exp

(
Pex0
2L

) [
sinh

(
λ0

x0
L

)
− 2λ0

Pe(1−2α) cosh
(
λ0

x0
L

)]
Pe2(1− 2α)2(sinh(2λ0)− 2λ0) + 4λ0Pe(1− 2α)(1− cosh(2λ0)) + 4λ0(2λ20 + λ0 sinh(2λ0))

. (33)
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Transforming Q(χ, τ) back to P (x, t) we obtain

P (x, t) =
∞∑
n=0

An

[
sin
(
λn
x

L

)
− 2λn

Pe(1− 2α)
cos
(
λn
x

L

)]
exp

(
−
(
λ2nD

L2
+
V 2

4D

)
t− V

2D
x

)
, (34)

for Pe(1− 2α)− 4α < 0, where An, n ≥ 0 is defined in Equation (31). For Pe(1− 2α)− 4α = 0,

P (x, t) =

{
A0(1− 2α

x

L
) +

∞∑
n=1

An

[
sin
(
λn
x

L

)
− 2λn

Pe(1− 2α)
cos
(
λn
x

L

)]
exp

(
−λ2nD
L2

t

)}
exp

(
−V 2

4D
t− V

2D
x

)
,

(35)

where An, n ≥ 1 is defined in Equation (31) and A0 is defined in Equation (32). For Pe(1− 2α)− 4α > 0,

P (x, t) =

{
An

[
sinh

(
λ0
x

L

)
− 2λ0

Pe(1− 2α)
cosh

(
λ0
x

L

)]
exp

(
λ20D

L2
t

)
+
∞∑
n=1

An

[
sin
(
λn
x

L

)
− 2λn

Pe(1− 2α)
cos
(
λn
x

L

)]
exp

(
−λ2nD
L2

t

)}
exp

(
−V 2

4D
t− V

2D
x

)
, (36)

where An, n ≥ 1 is defined in Equation (31) and A0 is defined in Equation (33).

P (x, t) describes the probability distribution of the position of a particle initially located at x = x0 and
we note that there is an implicit dependence on x0. However, we are typically interested in more than
a single particle. Hence we consider that there is initially some distribution of particles with the same
properties throughout the fluid. In the absence of additional information we make the assumption that the
particles are distributed uniformly at random. The nanoparticle distribution throughout the fluid, P̂ (x, t),
is therefore given by

P̂ (x, t) =
1

L

∫ L

0
P (x, t) dx0. (37)

Furthermore, we are interested in calculating the delivered dose, U(t), which is the proportion of the initially
administered dose that has arrived at the cell population. This can be calculated by evaluating the difference
between the initial nanoparticle mass present in the fluid and the nanoparticle mass present in the fluid at
time t. Specifically,

U(t) =

∫ L

0
P̂ (x, 0) dx−

∫ L

0
P̂ (x, t) dx. (38)

We can calculate these integrals analytically. For Pe(1− 2α)− 4α < 0,∫ L

0
P̂ (x, t) dx =

∞∑
n=0

Bn exp

(
−
(
λ2nD

L2
+
V 2

4D

)
t

)
×

[
exp

(
Pe
2

) [(
Pe
2L −

2λ2n
Pe(1−2α)L

)
sin(λn)−

(
λn

(1−2α)L + λn
L

)
cos(λn)

]
+ λn

L + λn
(1−2α)L

λ2n
L2 + Pe2

4L2

×exp
(−Pe

2

) [(
λn

(1−2α)L −
λn
L

)
cos(λn)−

(
Pe
2L + 2λ2n

Pe(1−2α)L

)
sin(λn)

]
+ λn

L −
λn

(1−2α)L
λ2n
L2 + Pe2

4L2


]
,

(39)

where, for n ≥ 0,

Bn =
4λnPe2(1− 2α)2

Pe2(1− 2α)2(2λn − sin(2λn)) + 4λnPe(1− 2α)(cos(2λn)− 1) + 4λn(2λ2n + λn sin(2λn))
. (40)
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For Pe(1− 2α)− 4α = 0,∫ L

0
P̂ (x, t) dx = exp

(
−V 2

4D
t

)
×

{

B0

[
16L4

{
exp

(
Pe
2

) [
Pe
2L + 2α

V −
Peα
V

]
− Pe

2L −
2α
L

}{
exp

(−Pe
2

) [
Peα
L −

Pe
2L + 2α

L

]
+ Pe

2L −
2α
L

}
Pe4

]

+

∞∑
n=1

Bn exp

(
−λ2nD
L2

t

)
×

[
exp

(
Pe
2

) [(
Pe
2L −

2λ2n
Pe(1−2α)L

)
sin(λn)−

(
λn

(1−2α)L + λn
L

)
cos(λn)

]
+ λn

L + λn
(1−2α)L

λ2n
L2 + Pe2

4L2

×exp
(−Pe

2

) [(
λn

(1−2α)L −
λn
L

)
cos(λn)−

(
Pe
2L + 2λ2n

Pe(1−2α)L

)
sin(λn)

]
+ λn

L −
λn

(1−2α)L
λ2n
L2 + Pe2

4L2


]}

,

(41)

where, for n ≥ 1, Bn is defined in Equation (40) and

B0 =
1

1− 2α+ 4α2

3

. (42)

For Pe(1− 2α)− 4α > 0,

∫ L

0
P̂ (x, t) dx = exp

(
−V 2

4D
t

)
×

B0 exp

(
λ20D

L2
t

)
×


exp

(
Pe
2

) [(
Pe
2L +

2λ20
Pe(1−2α)L

)
sinh(λ0)−

(
λ0

(1−2α)L + λ0
L

)
cosh(λ0)

]
+ λ0

L + λ0
(1−2α)L

Pe2

4L2 −
λ20
L2

×
exp

(−Pe
2

) [( 2λ20
Pe(1−2α)L− Pe

2L

)
sinh(λ0) +

(
λ0

(1−2α)L −
λ0
L

)
cosh(λ0)

]
+ λ0

L −
λ0

(1−2α)L

Pe2

4L2 −
λ20
L2




+

∞∑
n=1

Bn exp

(
−
(
λ2nD

L2
+
V 2

4D

)
t

)
×


exp

(
Pe
2

) [(
Pe
2L −

2λ2n
Pe(1−2α)L

)
sin(λn)−

(
λn

(1−2α)L + λn
L

)
cos(λn)

]
+ λn

L + λn
(1−2α)L

λ2n
L2 + Pe2

4L2

×exp
(−Pe

2

) [(
λn

(1−2α)L −
λn
L

)
cos(λn)−

(
Pe
2L + 2λ2n

Pe(1−2α)L

)
sin(λn)

]
+ λn

L −
λn

(1−2α)L
λ2n
L2 + Pe2

4L2



,
(43)

where, for n ≥ 1, Bn is defined in Equation (40) and

B0 =
4λ0Pe2(1− 2α)2

Pe2(1− 2α)2(sinh(2λ0)− 2λ0) + 4λ0Pe(1− 2α)(1− cosh(2λ0)) + 4λ0(2λ20 + λ0 sinh(2λ0))
. (44)
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Equation (38) describes the delivered dose for a nanoparticle population with a single set of physicochem-
ical characteristics, that is, the same density and diameter. We are interested in the delivered dose across
a polydisperse population of nanoparticles. If the nanoparticle diameters follow a size distribution S(η|θ)
where θ are the shape parameters that govern the distribution then the delivered dose for this population,
Up(t) is given by

Up(t) =

∫
η
S(η|θ)U(t) dη, (45)

noting that the value of η influences V , D and Pe depending on the type of polydispersity considered. Note
that this delivered dose corresponds to the number delivered dose.

For the mass delivered dose we add an additional weighting function that corresponds to the relative
volume of each nanoparticle, and normalise by the total volume of the population,

Umass(t) =

4π
24

∫
η d(η)3S(η|θ)U(t) dη

4π
24

∫
η d(η)3S(η|θ) dη

, (46)

where d(η) is the diameter of the nanoparticle.

Method of solution

As the integral in Equation (46) cannot be solved for an arbitrary size distribution, we use a numerical
approximation of the integral consisting of Equation (38) evaluated at ∆θ values of the size distribution.
We truncate the infinite series in each solution after nmax terms and note that the solution is insensitive to
the inclusion of additional terms. To obtain the eigenvalues defined by the solutions to Equations (24) and
(26) we use Matlab’s fzero function, with the interval of possible function roots defined as previously. We
note that in specific cases, corresponding to nanoparticles where sedimentation is significantly larger than
diffusion, oscillations in the solution can appear at short times, due to the presence of Gibbs phenomena.
In these cases, a numerical solution should be considered.

Experimental details

To obtain the scanning electron microscopy data we incubated 400 nm PEG (40kDa) @ mesoporous silica
nanoparticles in Milli-Q in a 12 well plate containing a silica wafer. Particles composed of PEG were syn-
thesised using a mesoporous silica template according to a previous published method [1, 2], and the silica
template was not removed from the nanoparticle. The nanoparticles were taken from a stock solution at
4.4×106 nanoparticles/µL, and 45 µL of this solution was added to 1455 µL of Milli-Q. Prior to incubation in
the well, the nanoparticle/Milli-Q solution was vortexed and briefly sonicated to assure uniform distribution
throughout the solution. Particles were undisturbed for 4 h and allowed to settle. After 4 h of incubation,
fluid was removed from the well. The remaining silica wafer was then gold-sputtered and imaged using
scanning electron microscopy (Philips XL30 FESEM) with a 15 kV beam. Images of the nanoparticles atop
the silica wafer were captured at 12,000x magnification.

To obtain the size distribution of the nanoparticles we chose three representative SEM images, shown in
Figures S1(a)-(c). The size of the nanoparticles was detected and measured automatically using Matlab’s
imfindcircles function with a minium radius of 7 pixels, a maximum radius of 30 pixels and a edge
threshold detection value of 0.3. We overlay the detected circles in Figures S1(d)-(f). Red circles correspond
to detected circles that are manually removed due to inaccuracy, while green circles correspond to detected
circles that contribute to the measured size distribution (Main manuscript, Figure 5(b)). Finally, we fit a
lognormal distribution to the histogram of measured nanoparticle diameters.
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(a)

(d) (d)

(b)

(f )

(c)

Figure 1: Scanning electron microscopy images of 400nm PEG @ mesoporous silica nanoparticles. Green
circles represent nanoparticles detected and measured by our image analysis algorithm. Red circles corre-
spond to detected nanoparticles that are manually removed, and hence not measured, as inspection revealed
these to be false positives.
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