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Determination of the spinner constant α

Each particle of the lattice is connected to a gyroscopic spinner, shown in Fig. S1.
The gyroscopic spinner is pinned at the bottom end, where it can rotate but cannot
translate. We denote by ψ, φ and θ the angles of spin, precession and nutation,
respectively.

The equations of motion of the gyroscopic spinner are given by [1]

Mx′ = I0θ̈ + (I − I0)φ̇2 sin (θ) cos (θ) + Iφ̇ψ̇ sin (θ) , (S1a)
My′ = I0φ̈ sin (θ) + (2I0 − I)φ̇θ̇ cos (θ)− Iθ̇ψ̇ , (S1b)

Mz′ = Mz = I
[
φ̈ cos (θ)− φ̇θ̇ sin (θ) + ψ̈

]
. (S1c)

Since the displacement of the lattice particle is small, the nutation angle of the
gyroscopic spinner is also small, namely |θ| � 1. Accordingly, the equations of
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Figure S1: Schematic representation of a gyroscopic spinner.

motion (S1) to leading order take the form:

Mx′ = I0θ̈ + (I − I0)φ̇2θ + Iφ̇ψ̇θ , (S2a)
My′ = I0φ̈θ + (2I0 − I)φ̇θ̇ − Iθ̇ψ̇ , (S2b)

Mz′ = Mz = I
(
φ̈− φ̇θ̇θ + ψ̈

)
. (S2c)

We assume that the spin and precession rates are constant, i.e. ψ̇ = Const = Ω and
φ̇ = Const. Furthermore, neglecting the effect of gravity, Mx′ = My′ = 0. Hence,
we obtain:

0 = I0θ̈ + (I − I0)φ̇2θ + IΩφ̇θ , (S3a)
0 = (2I0 − I)φ̇θ̇ − IΩθ̇ , (S3b)
Mz′ = Mz = −Iφ̇θ̇θ . (S3c)

Here, Eq. (S3b) leads to
φ̇ = I

2I0 − I
Ω . (S4)

In the time-harmonic regime, the nutation angle has the form θ = Θeiωt, where ω
is the radian frequency of the lattice. Substituting this form into Eq. (S3a) and
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using Eq. (S4), we determine the following compatibility condition between the
spin rate Ω and the radian frequency ω:

Ω = ±2I0 − I
I

ω . (S5)

Comparing Eqs. (S4) and (S5), we observe that φ̇ = ±ω.
Finally, using Eq. (S3c), we derive the expression for the moment Mz imposed

by the gyroscopic spinner on the lattice particle attached to it:

Mz = ∓iω2θ2 . (S6)

In the linearised case, the nutation angle is given by θ = |u| /h, where |u| is the
magnitude of the (in-plane) particle displacement and h is the height of the spinner
(see Fig. S1). Hence, the force applied to the lattice particle by the gyroscopic
spinner is

F = Mz

|u|
= ∓i I

h2ω
2 |u| . (S7)

Consequently, the spinner constant appearing in Eqs. (2.1) and (3.1) of the main
text is given by

α = I

h2 , (S8)

as also shown in [2].
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