Supplementary Material

Title: Interfacial waveforms in chiral lattices with gyroscopic spinners
Authors: M. Garau ${ }^{1}$, G. Carta ${ }^{2}$, M.J. Nieves ${ }^{3,1, *}$, I.S. Jones ${ }^{2}$, N.V. Movchan ${ }^{4}$, A.B. Movchan ${ }^{4}$
${ }^{1}$ Keele University, School of Computing and Mathematics, Keele, ST5 5BG, UK
${ }^{2}$ Liverpool John Moores University, Mechanical Engineering and Materials Research Centre, Liverpool, L3 3AF, UK
${ }^{3}$ University of Cagliari, Department of Mechanical, Chemical and Material Engineering, Cagliari, 09123, Italy
${ }^{4}$ University of Liverpool, Department of Mathematical Sciences, Liverpool, L69 7ZL, UK

* Corresponding author

Email address of the corresponding author: m.nieves@keele.ac.uk

Determination of the spinner constant α

Each particle of the lattice is connected to a gyroscopic spinner, shown in Fig. S1 The gyroscopic spinner is pinned at the bottom end, where it can rotate but cannot translate. We denote by ψ, ϕ and θ the angles of spin, precession and nutation, respectively.

The equations of motion of the gyroscopic spinner are given by [1]

$$
\begin{align*}
M_{x^{\prime}} & =I_{0} \ddot{\theta}+\left(I-I_{0}\right) \dot{\phi}^{2} \sin (\theta) \cos (\theta)+I \dot{\phi} \dot{\psi} \sin (\theta), \tag{S1a}\\
M_{y^{\prime}} & =I_{0} \ddot{\phi} \sin (\theta)+\left(2 I_{0}-I\right) \dot{\phi} \dot{\theta} \cos (\theta)-I \dot{\theta} \dot{\psi}, \tag{S1b}\\
M_{z^{\prime}} & =M_{z}=I[\ddot{\phi} \cos (\theta)-\dot{\phi} \dot{\theta} \sin (\theta)+\ddot{\psi}] . \tag{S1c}
\end{align*}
$$

Since the displacement of the lattice particle is small, the nutation angle of the gyroscopic spinner is also small, namely $|\theta| \ll 1$. Accordingly, the equations of

Figure S1: Schematic representation of a gyroscopic spinner.
motion (S1) to leading order take the form:

$$
\begin{align*}
& M_{x^{\prime}}=I_{0} \ddot{\theta}+\left(I-I_{0}\right) \dot{\phi}^{2} \theta+I \dot{\phi} \dot{\psi} \theta, \tag{S2a}\\
& M_{y^{\prime}}=I_{0} \ddot{\phi} \theta+\left(2 I_{0}-I\right) \dot{\phi} \dot{\theta}-I \dot{\theta} \dot{\psi}, \tag{S2b}\\
& M_{z^{\prime}}=M_{z}=I(\ddot{\phi}-\dot{\phi} \dot{\theta} \theta+\ddot{\psi}) . \tag{S2c}
\end{align*}
$$

We assume that the spin and precession rates are constant, i.e. $\dot{\psi}=$ Const $=\Omega$ and $\dot{\phi}=$ Const. Furthermore, neglecting the effect of gravity, $M_{x^{\prime}}=M_{y^{\prime}}=0$. Hence, we obtain:

$$
\begin{align*}
& 0=I_{0} \ddot{\theta}+\left(I-I_{0}\right) \dot{\phi}^{2} \theta+I \Omega \dot{\phi} \theta, \tag{S3a}\\
& 0=\left(2 I_{0}-I\right) \dot{\phi} \dot{\theta}-I \Omega \dot{\theta}, \tag{S3b}\\
& M_{z^{\prime}}=M_{z}=-I \dot{\phi} \dot{\theta} \theta . \tag{S3c}
\end{align*}
$$

Here, Eq. (S3b) leads to

$$
\begin{equation*}
\dot{\phi}=\frac{I}{2 I_{0}-I} \Omega . \tag{S4}
\end{equation*}
$$

In the time-harmonic regime, the nutation angle has the form $\theta=\Theta \mathrm{e}^{\mathrm{i} \omega t}$, where ω is the radian frequency of the lattice. Substituting this form into Eq. (S3a) and
using Eq. (S4), we determine the following compatibility condition between the spin rate Ω and the radian frequency ω :

$$
\begin{equation*}
\Omega= \pm \frac{2 I_{0}-I}{I} \omega \tag{S5}
\end{equation*}
$$

Comparing Eqs. (S4) and (S5), we observe that $\dot{\phi}= \pm \omega$.
Finally, using Eq. $\overline{\mathrm{S} 3 \mathrm{c}}$, we derive the expression for the moment M_{z} imposed by the gyroscopic spinner on the lattice particle attached to it:

$$
\begin{equation*}
M_{z}=\mp \mathrm{i} \omega^{2} \theta^{2} \tag{S6}
\end{equation*}
$$

In the linearised case, the nutation angle is given by $\theta=|\boldsymbol{u}| / h$, where $|\boldsymbol{u}|$ is the magnitude of the (in-plane) particle displacement and h is the height of the spinner (see Fig. S1). Hence, the force applied to the lattice particle by the gyroscopic spinner is

$$
\begin{equation*}
F=\frac{M_{z}}{|\boldsymbol{u}|}=\mp \mathrm{i} \frac{I}{h^{2}} \omega^{2}|\boldsymbol{u}| \tag{S7}
\end{equation*}
$$

Consequently, the spinner constant appearing in Eqs. (2.1) and (3.1) of the main text is given by

$$
\begin{equation*}
\alpha=\frac{I}{h^{2}} \tag{S8}
\end{equation*}
$$

as also shown in 2 .

References

[1] Goldstein H, Poole C, Safko J. 2002 Classical Mechanics, 3rd edition. San Francisco: Addison Wesley.
[2] Brun M, Jones IS, Movchan AB. 2012 Vortex-type elastic structured media and dynamic shielding. Proc. R. Soc. A 468, 3027-3046. (doi: 10.1098/rspa.2012.0165)

