Increased sea ice concentration worsens fledging condition and juvenile survival in a pagophilic seabird, the snow petrel
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Study species and monitoring
The islands of the Pointe Géologie archipelago are surrounded by sea ice during the austral winter and are generally surrounded by open water during the austral summer. However, depending on the year, the sea ice extent and concentration can vary greatly [1]. Snow petrels breed during the Antarctic summer in rocky ice free areas under boulders or within crevices [2]. Approximately 1000 breeding pairs of snow petrels breed in the archipelago [3]. During the breeding season snow petrels feed mostly on sea ice associated prey such as fish (mainly Antarctic silverfish Pleuragramma antarcticum) and krill (mainly Euphausia crystallorophias and E. superba) and occasionally on squid (mainly Psychroteuthis glacialis)[4–8]. 
Since 1964, three colonies of snow petrels in the Pointe Géologie archipelago have been monitored annually [9–11]. In these colonies all adult individuals were identified, ringed with a stainless steel band, measured (wing length ± 1 mm, culmen length ± 0.1 mm, tarsus length ± 0.1 mm, and bill depth ± 0.1 mm, see [12] for details), and sexed by vocalization (females have higher sound frequency than males [13]) during nests visits made just after the end of the laying period. Hatching dates were recorded by daily inspections of nest contents, and a final nest visit in mid-February was made to mark the chicks and estimate breeding success. Body size measurements (wing length, culmen length, and body mass ± 1 g) were also carried out annually since 1993 on all chicks of the three study colonies 40 days after hatching. We used this data set to investigate environmental effects on fledging body condition.

In addition to these three colonies, all nests of the archipelago were marked and their contents checked once during the second week of December to identify the breeding and non-breeding birds, and once in mid-February to mark the chicks with a stainless steel ring just before fledging. We used this data set to investigate environmental effects on juvenile survival.

Environmental variables
Sea ice contributes to a substantial proportion of the annual primary productivity in the seasonal ice zone and is important in the life cycle of krill [14] and Antarctic silverfish [15,16], both primary food resources for snow petrels. In addition, snow petrels are known to forage exclusively in the sea ice zone targeting specific sea ice concentration areas [4,17]. In the same way, sea surface temperature plays a fundamental role in net primary production [18], which may have an effect in the distribution and abundance of snow petrels’ preys. Sea ice concentration and sea surface temperature are known to affect demographic parameters in several Antarctic seabird species [19].
The SAM is the dominant mode of atmospheric variability in the Southern Hemisphere, and is characterized by the displacements of atmospheric masses between the polar regions and the mid-latitudes [20]. SAM is related to the temperature variation of the Antarctic, the temperature of the surface waters of the Southern Ocean and the distribution of sea ice around the Antarctic. A positive phase of the SAM is associated with an amplification of the surface westerlies around 60°S, and a weakening of the surface westerlies farther north. This induces Ekman drift which increases Antarctic sea ice extent and improves upwelling near the Antarctic continent [21].  

Monthly SIC and SST data were obtained from http://iridl.ldeo.columbia.edu /SOURCES/.NOAA/.NCEP/.EMC/.CMB/.GLOBAL/.Reyn_SmithOIv2/. To take into account the variation in the spatio-temporal distribution of adult snow petrels [22], these two covariates where extracted during the chick-rearing period (from January to March) for the sector 66°S-67°S, 139°E-142°E corresponding to the Dumont d’Urville Sea, and during the winter period (from April to September) for the sector 66°S-67°S, 130°E-149°E when birds use a larger feeding area [23].
Annual SAM values ​​were obtained from the online database of the British Antarctic Survey [24]. Since some climate covariates were correlated to each other (table S1) we used variance inflation factors to assess which explanatory variables were collinear and should be dropped before starting the analyses [25]. A cut-off value of 3 was used to remove collinear variables. 

Modelling fledging body condition

The scale mass index (SMI) adjusts the mass of all individuals to that expected if they had the same body size. We used the score of the first axis of a principal component analysis (PC1) combining wing and culmen lengths to characterize body size. PC1 accounts for 68% of the total variance and the wing and culmen length measurements are highly correlated with PC1 (r > 0.66; P < 0.001). The SMI was calculated for each individual i according to the formula:
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[26]
where Mi and Li are, respectively, the body mass and the PC1 score of the individual i, L0, is the  value of PC1 for the whole studied population and b the slope estimate of the SMA (Standardized Major Axis) regression of log-transformed body mass on log-transformed PC1. We used the SMI obtained for each chick as an indicator of fledging body condition.

The interest of GAMM is the smoothing function which allows to make more flexible assumptions about the real relationship between the response variable and the predictors [27,28]. Thus, GAMM can describe complex non-linear relationships between a response variable and predictors. In addition to the three climatic covariates described above, we also considered three non-climatic covariates that could influence the SMI: the body size of the parents (Size), which affects the feeding frequency of the chicks and thus potentially the SMI [10]; the hatching date (Date), which is known to affect the body condition of chicks in birds [29,30]; and yearly breeding success of the monitored colonies (BS), which may be an indicator of trophic conditions during the breeding season [31,32]. In order to take into account the individual variability of the parents, we added a random effect for each parent in the model. Indeed, over all the years of the dataset, breeding adults can have several chicks, generating autocorrelation that can affect the results of the model. To incorporate this pattern into the model, each year was allowed to have a different variance. Therefore, our initial model was:
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where E(SMIi) is the expected value of the SMI as a function of the predictors, β0 is an intercept, fk = 1,... 6 are nonparametric smoothing functions, εi and δi are normally distributed random effects with mean zero and variance[image: image4.png]
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 , respectively. The dataset consisted of n = 1165 chicks for which SMI was calculated. Residual normality was visually verified. We use a GAMM with a Gaussian family and identity link function. Model were fit  with R 3.2.2 [33].
The use SMI has been criticized as a nonlethal measure of body condition in seabirds [34]. Therefore, in addition to the SMI, we calculated the body condition index (BCI) estimated for each individual as the residual from an ordinary least squares regression of mass on the PC1 [34]. We then ran the same GAMM model as for SMI.
Modelling juvenile survival

The snow petrel is a long-lived species with an average age of first breeding around 9-10 years [9]. Therefore, to have a sufficient number of observations to estimate juvenile survival, we considered individuals banded as chicks from 1964 to 2000 (n = 6418) and recaptured in the Pointe Géologie archipelago during the period 1964 to 2015, allowing us to know the age at recapture with precision. Chicks banded during the last 15 years (2001 to 2016) were not included in the analysis since these cohorts probably have not yet fully recruited (90% of a cohort is recruited 15 years after banding, [11]). Individuals that were never seen again after marking were taken into account to avoid an overestimation of survival. Observations at other snow petrel breeding sites outside the Pointe Géologie archipelago suggests that very few individuals (n = 2) born in the archipelago were breeding in distant colonies (25-1300 km). From the initial marking event and the successive recaptures at each breeding season we constructed a capture history for each individual coded with a "1" when the individual was observed and with a "0" when the individual was not observed. Individuals not observed may be dead, alive and absent from the recapture zone or alive and present in the recapture area but not detected.  

Since our main interest was in modelling the factors affecting juvenile survival, the initial capture-mark-recapture model [35] from which model selection was performed was model (Фjuv.t, ad page), where apparent survival of juvenile individuals was time dependent, survival of adult individuals was constant and recapture probability was fully age dependent with 51 age classes. Since no individual was observed on colonies before the age of 5 we constrained the probability of recapture from 1 to 4 years to 0 and survival probabilities of ages 2 to 5 to 1 in order to make the parameters identifiable [36]. Thus, juvenile survival was estimated over the first 5 years of life. Adult survival was constrained to be constant from age 6, corresponding to the minimum age at first breeding [9,11] and as suggested by a previous study [37]. From this initial model, we tested different models where age classes on recapture probability were aggregated starting from the oldest age classes. We also tested whether the recapture probability varied according to a linear or quadratic trend (on a logit scale) according to age. For body size of the parents and chick SMI only 7 years of data were available to test their effect on juvenile survival (since chick were measured only from 1993 and the cohorts born after 2000 were excluded from the survival analysis), which was insufficient. The period available for each covariate is presented in table S2. 

The effects of covariates were tested using linear or quadratic (on a logit scale) relationships and using analysis of deviance (ANODEV) following [38,39]. The proportion of variance explained by covariates (R²,[40]) was calculated as:
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where Mcov is the covariate model, Mt is the time-dependent model and Mcst is the constant model.

Goodness-of-fit of the initial model was evaluated using the median c-hat approach (with 10 levels of c-hat and 10 replicate points at each level) available in MARK, and the estimated variance inflation factor c-hat was used to adjust standard errors and model selection criterion [41]. Model selection was performed using the corrected quasi-likelihood adjusted Akaike Information Criterion (QAICc) [42]. In practice, we consider two models as different if the difference of QAICc between these models is greater than 2. The median c-hat goodness-of-fit test indicated that the global model fit the data adequately (c-hat = 1.17, [35]). Accordingly, this model was used as a starting point for analysing the data on snow petrel survival with a c-hat value of 1.17.

Table S1. Testing for collinearity between different covariates before and after selection. VIF = variance inflation factor.
	Covariate
	VIF test value

before variable selection
	VIF test value

after variable selection

	Breeding success
	1.41
	1.24

	Adult body size
	1.05
	1.04

	Sea ice concentration in summer
	8.06
	1.23

	Anomaly of sea surface temperature in summer
	10.97
	Not selected

	Sea ice concentration in winter
	25.07
	Not selected

	Anomaly of sea surface temperature in winter
	28.80
	Not selected

	Southern Annular Mode
	2.47
	1.16

	Laying date
	1.16
	1.12


Table S2. Time period available for each covariate of the model. 

	Covariate
	Years available

	Southern Annular Mode
	1964 to 2000

	Sea ice concentration
	1981 to 2000

	Breeding success
	1964 to 2000

	Body size of the parents
	1993 to 2000

	Fledging SMI
	1993 to 2000


Table S3. Modelling recapture probability and juvenile survival probability of snow petrels from Pointe Géologie between 1964 and 2000. k = number of identifiable parameters.

	Model number
	Model structure
	k
	Deviance
	QAICc
	(QAICc

	1
	Фjuv.t, ad p51
	85
	6861.9
	13639.4
	32.8

	2
	Фjuv.t, ad p45
	79
	6865.6
	13630.8
	24.2

	3
	Фjuv.t, ad p40
	74
	6875.4
	13630.4
	23.8

	4
	Фjuv.t, ad p35
	69
	6879.8
	13624.7
	18.1

	5
	Фjuv.t, ad p30
	64
	6884.5
	13619.2
	12.6

	6
	Фjuv.t, ad p25
	59
	6885.9
	13610.5
	3.9

	7
	Фjuv.t, ad p20
	54
	6900.5
	13614.9
	8.3

	8
	Фjuv.t, ad p21
	55
	6891.9
	13608.4
	1.8

	9
	Фjuv.t, ad p22
	56
	6890.8
	13609.3
	2.7

	10
	Фjuv.t, ad p23
	57
	6886.1
	13606.6
	0

	11
	Фjuv.t, ad p24
	58
	6886.1
	13608.7
	2.1

	12
	Фjuv, ad p23
	21
	7127.9
	13775.9
	169.3


Table S4. Results of the GAMM model explaining fledging body condition in snow petrels as a function of environmental and intrinsic covariates. Results for Scale mass index (SMI) and Body condition index (BCI) are reported. Results using BCI suggest a positive effect, although weak, of adult body size (structurally larger parents tend to fledge chick s in better conditions) and laying dates (females that lay their egg later tend to fledge chicks in better condition).
	Index
	Variables
	Smoother edf
	F-test
	P-value

	SMI
	Southern Annular Mode
	1.87
	19.867
	<0.001

	
	Sea ice concentration
	1.76
	48.283
	<0.001

	
	Adult body size
	1.51
	1.929
	0.09

	
	Laying date
	1.00
	0.002
	0.96

	
	Breeding success
	1.00
	0.373
	0.48

	BCI
	Southern Annular Mode
	1.92
	17.98
	<0.001

	
	Sea ice concentration
	1.93
	28.23
	<0.001

	
	Adult body size
	1.52
	5.35
	0.03

	
	Laying date
	1.85
	6.09
	0.02

	
	Breeding success
	1.00
	1.68
	0.19
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Figure S1. Standardized temporal trends of SMI (solid line, solid circles) and SIC (dashed line, triangles) from 1993 to 2014 for the January-March period. Error bars are s.e.
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Figure S2. Standard diagnostic plots from the residuals of the model.
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Figure S3. Estimated smoothing curves (with s.e. ) for SIC in relation with the Scale Mass Index (a) and the Body Condition Index (b).
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Figure S4. Estimated smoothing curves (with s.e.) for SAM in relation with the Scale Mass Index (a) and the Body Condition Index (b).
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