
Supplementary information to Beninde, J. et al. “Admixture of hybrid 

swarms of native and introduced lizards in cities is determined by the 

cityscape structure and invasion history” 

 

SECTION 1: Sampling design and field work 

To adequately cover the distribution of the common wall lizard, Podarcis muralis, within the four 

cities we produced city-wide distribution maps. These maps were based on field surveys 

conducted prior to sampling by ourselves, except for Mannheim, where unpublished data from a 

citywide census was made available to us (performed by the German conservation NGO NABU). 

These surveys captured the distribution of lizards comprehensively in all four cities. We then 

estimated patch specific lizard densities in a standardized procedure following the protocol of the 

German Federal Agency for Nature Conservation. These were issued for assessment of 

conservation status of this species [1], which is protected under the Habitats Directive of the 

European Union. Where areas were not accessible, potential distribution and abundance was 

estimated based on habitat availability and the presence and frequency of lizards in the vicinity. 

We used these fine-scale distribution maps to produce 200 random sampling points across each 

city within the species’ respective local distribution, weighted by the relative abundance of lizards 

within patches (stratified random sampling). 

 

SECTION 2. Molecular analyses 

As recommended in the supplementary protocol of the Qiagen DNEasy blood and tissue kit for 

isolation of DNA from buccal swabs, ATL buffer was replaced by 400 µl PBS buffer. For 

cytochrome b sequences, we used 50 µl PCR reactions, containing 0.0625 µmol/µL of the primers 

LGlulk (5’-AACCGCCTGTTGTCTTCAACTA-3’) and Hpod (3’-GGTGGAATGGGATTTTGTCTG-5’), 

added 2-10 ng of genomic DNA, 20 µl 5 Prime Mastermix and 25 µl purified water [2]. PCR settings 

were 15 min at 95°C, 35 cycles of 30s at 94°C, 30s at 43°C, 90s at 72°C and 10 min at 72°C.  

GenBank accession numbers used for alignement and fitting of tree are as follows: Western France 

lineage AY234155 [3]; Calabria lineage DQ001023, Tuscany lineage DQ001028, Eastern France 

(native lineage) DQ001029, Venetia DQ001032 [4]; Central Balkans lineage HQ652887, Romagna 

lineage HQ652921, Southern Alps lineage HQ652963 [2]. Lineage names follow 5 [5], which can 

extend beyond the geographic extant the name implies, e.g. the Western France lineage also occurs 

in Spain. A phylogenetic tree was fitted using P. siculus and P. melisellensis as outgroups 

(HQ154646, AY185097, [6]).  

 



For genotypic analyses, we used the following microsatellite loci: twelve had been developed for 

Podarcis muralis (B3, B4, C9: 7; PmurC150, PmurC168, PmurC275_278, PmurC164, PmurC038, 

PmurC028, PmurC356, PmurC109, PmurC103: [8]), two for Zootoca vivipara (Lv-319 and Lv-472: 

[9]) and three for Podarcis bocagei (Pb10, Pb50, Pb73: [10]). Primers were labelled with FAM, 

TAMRA or HEX. Multiplex PCR protocols for two or three loci were used with the following 

annealing temperatures: 57°C for C9, B4, Pb73 and all PmurC-primers; 56°C for B3, Pb10 and 

Lv319; 53°C for Lv472 and Pb50. Using the HotMasterMix by 5PRIME or Multiplex Mastermix by 

Qiagen and Multigene Gradient Thermal Cyclers (Labnet) amplifications were conducted as 

recommended by manufacturers. Multiplex PCRs were performed in 10 µl reaction mix 

containing: 2–10 ng genomic DNA, 5.0 µl MasterMix, 2.0 µl water and 0.1 µM of each primer. 

Fragment lengths of PCR products was determined on a MEGABACE 1000 sequencer using the 

software Fragment Profiler 1.2 (Amersham Biosciences) or on Applied Biosystems 3500 and 3750 

Genetic Analysers using the softwares GeneMapper 5 (Applied Biosystems) or PeakScanner 2.0 

(Applied Biosystems). We ran ca. 28 samples per multiplex on all sequencers to quantify 

differences in fragment lengths and calibrate the final dataset. 

 

 

SECTION 3: Landscape models of environmental factors  

 

Environmental factors utilized in this study: 

Aspect 

Southerly exposed slopes warm up most intensely and thus represent suitable habitat for reptiles 

in general and for Podarcis muralis in Germany, at its Northern range margin, specifically [11].  

northern, north-western, north-eastern  

western, eastern       

flat       

south-western, south-eastern      

southern       

  

 

Slope 

Although included in a previous publication covering the city of Trier, we could not acquire this 

data for the other cities. In Trier, slope did not contribute to the best model of gene flow. We had 

included this factor initially, as steeper slopes capture more solar irradiance, representing more 

suitable habitat.  

 



Substrate 

Substrate types differ in their physical properties, thermal radiation as well as absorption and 

storage capacities of moisture. As summarized by Schulte [11], 55% of populations occur on rocky 

or gravel substrates, 30% of occurrences are located on open ground substrate. The remaining 

occurrences were detected on sealed surfaces. Accordingly, we created three category-levels.  

sealed surfaces     

open ground       

rocky/gravel   

none of these   

 

rock/gravel: mostly railroads, but also dry stone walls in vineyards as well as rock formations 

were included here. 

open ground: this includes unsealed parking lots, sandy areas and sports fields. All of these were 

areas were not vegetated.  

sealed surfaces: includes roads, houses and sealed parking lots  

 

 

Canopy cover 

Here, all trees were digitized due to negative effects on Podarcis muralis populations by shadowing 

[11].  

trees    

no trees 

 

Vegetation type  

The previous category ‘vegetation height’ was also evaluated in its naturalness, as more natural, 

unmanaged vegetation was shown to harbor a higher density of arthropods. We distinguished 

semi-natural, cultivated and planted vegetation.  

planted vegetation   

cultivated vegetation    

semi-natural vegetation  

no vegetation  

 

Structural diversity 

In this layer, the structural variety of different surfaces was evaluated to capture potential hiding 

places, such as crevices, fugues joints or hollow spaces. These are used by Podarcis muralis as 

retreats, overwintering sites and also as nesting sites [11]. We distinguished low, intermediate 

and high levels of structural diversity. 



low structural diversity  

medium structural diversity  

high structural diversity  

no structural diversity  

 

low structural diversity: highly managed, uniform areas, as well as sandy areas 

medium structural diversity: natural meadows, gardens in residential areas, walls and cemeteries.  

high structural diversity: areas bordering railway tracks, scrapyards, allotment gardens, ruderal 

areas, and non-utilized areas.  

 

Buildings  

All houses and buildings were digitized individually or as larger polygons, if spatially arranged as 

near-contiguous blocks or rows. Additionally, a buffer of ten meters was then added to capture 

negative effects of the shaded area of buildings and houses.  

buildings       

no buildings 

 

South-facing walls 

To create this layer the unbuffered building layer was copied and superimposed on the other. 

Then, the upper layer was shifted by two meters to the north and cut out using the "Erase" function 

in ArcGIS. This leaves only south-facing walls. Additionally walls in vineyards were included. 

south-facing walls 

no south-facing walls 

 

Roads 

All tarred roads were digitized here, pedestrian and bicycle paths were not included. 

Subsequently, this line feature class was buffered by a meter to capture the negative impacts by 

traffic.  

roads 

no roads   

    

Traffic 

In addition to the roads layer, all major roads were scaled according to traffic volume (only those 

roads with an average daily traffic, ADT, greater than 2900 vehicles 24 h). Data was received from 

the traffic bureaus of local authorities. All roads were buffered by four meters to capture the width 

of roads. Roads were scaled proportionate to the maximum ADT of each city.  



 

Water 

All areas covered by water were digitized, representing unsuitable habitat.  

water surfaces      

no water surfaces 

 

Grid development 

The area of grids expanded beyond the extent digitized for environmental factors to prevent false 

inferences of landscape resistances: if individuals are close to a grids’ boundary, movement of 

such individuals can be artificially constrained in simulations [12]. For landscape genetic analyses, 

we therefore expanded the extent of the grids where necessary, by buffering sample locations 

according to dispersal distances of this species. We chose a 1km buffer distance, equaling the 

maximum distance a wall lizard has been recorded to disperse and strongly exceeding average 

dispersal distances of <200m [13]. Following Koen et al. [12], we assigned random values to 

buffered areas extending beyond those areas with known data. Random data was created 

proportional to known data values of environmental factors in areas with known data (figure 2). 

This procedure has demonstrated to prevent overestimation of resistances, when compared with 

true environmental data, and thus alleviates potential effects of artificial boundaries [12].  

 

 

Section 4: Distribution modelling 

 

Species Distribution Modelling using Maxent 

We used a presence-only (PO) method (Maxent) to build SDMs for Podarcis muralis. Maxent is a 

machine learning method following a maximum entropy approach [14] implemented in the 

Maxent software v3.3.3k [15,16]. Maxent is widely applied for PO data in species distribution 

modeling and also used to explore and interpret the environmental drivers shaping a species’ 

distribution [17]. Maxent uses presence locations, background points and a set of predictor 

variables to estimate the probability of presence (logistic output) for each grid cell of the 

landscape. Circumventing the criticism of interpreting the logistic output in this way [18,19], it is 

commonly viewed as a habitat suitability [20]. The background points are taken from the 

landscape and are used to contrast the conditions at presence sites, therefore it is also sometimes 

called a presence-background method. We refrained from also testing generalized linear models 

for PA data as we showed previously that PO data delivers better results in the context of 

landscape genetic optimization in common wall lizards [21].  



To avoid data collinearity and model overfitting [22,23] we applied the following procedure to 

reduce the number of predictors and determine the optimal model complexity: In a first step we 

checked the pairwise correlations between all twelve environmental factors using SDMtoolbox 

[24] and removed factors with a Pearson correlation coefficient larger than 0.7 [23]. We used all 

presence points of the sampled individuals and the remaining environmental predictors to run 

Maxent with the following changes to the default settings. We enabled the creation of response 

curves and jackknifing to measure variable performance. Only linear and quadratic features were 

selected to avoid the creation of overly complex response curves for the two continuous variables. 

Because the field survey was conducted throughout the entire city, i.e. without spatial sampling 

bias, we selected the entire city as the modelling background (using 10000 background points). 

We did not let Maxent remove duplicate records, i.e. presence points in the same grid cell, as in 

our study, duplicates represent higher local abundances and are not a result of varying spatial 

sampling intensity. In cases of variable spatial sampling intensity the removal would be advisable 

(see e.g. Kramer-Schadt et al. [25]).  

We also changed the default prevalence τ. Elith et al. [20] state that a τ value of 0.5 corresponds 

to a temporal and spatial scale of sampling that results in a 50% chance of the species being 

present in suitable areas and leads to values of the logistic output near 0.5 at “typical” presence 

sites. In the case of the common wall lizard and when sampling during sunny weather conditions, 

the probability of encountering individuals is larger than 50% at suitable sites. Although we did 

not formally test the probability of encountering individuals at such sites, we set τ to the value of 

0.75, a value that seems more reasonable to us than the arbitrary default value of τ=0.5. The 

arbitrariness of the default value of τ is one of the major points of criticism concerning the 

interpretation of the logistic output as a probability of presence [17,19]. For further justification 

see supplementary information for Beninde et al. [21]. 

In a stepwise procedure we eliminated the predictor contributing least to the model, using 

Maxent’s own analysis of variable contribution and re-ran Maxent with the reduced predictor set. 

AICc values were calculated for all models using NicheAnalyst (v3.0; [26]) (Maxent’s raw output 

is necessary for this) to determine the best model based on the minimum ∆AICc values [22]. When 

there was more than one equally good model we chose the one with the smallest number of 

environmental factors as the final predictor set. Although, to our knowledge, the use of almost 

only categorical predictors is uncommon in this application, Elith & Graham [27] state that 

categories are modeled well with Maxent. 

In a last step we ran the final PO-model with 10-fold cross-validation (CV), so AUC (area under the 

curve of receiver-operator characteristic) values could be calculated on independent test data as 

a measure of model fit. Although AUC scores for PO data as a measure of performance can be 

misleading [28], Merow et al.[17] note that AUC is appropriate for high sampling intensities, which 



is the case in our study. As an additional performance measure we show the omission of test 

localities (or extrinsic omission error [29], table S7) with respect to the maximum sum of test 

sensitivity plus specificity (maxSSS) threshold, which is proposed for PO data [30,31]. It is 

calculated by Maxent and describes the proportion of test localities which fall in areas predicted 

as unsuitable after thresholding the continuous model output into a binary presence absence map. 

 

References 

[1] PAN & ILÖK. 2010 Bewertung des Erhaltungszustandes der Arten nach Anhang II und IV der Fauna-

Flora-Habitat-Richtlinie in Deutschland. Überarbeitete Bewertungsbögen der Bund-Länder-

Arbeitkreise als Grundlage für ein bundesweites FFH-Monitoring. Umpublished work comissioned 

by the German Federal Agency for Nature Conservation (BfN). 

[2] Schulte, U., Veith, M. & Hochkirch, A. 2012 Rapid genetic assimilation of native wall lizard 

populations (Podarcis muralis) through extensive hybridization with introduced lineages. Mol. 

Ecol. 21, 4313–4326. 

[3] Busack, S., Lawson, R. & Arjo, W. 2005 Mitochondrial DNA, allozymes, morphology and historical 

biogeography in the Podarcis vaucheri (Lacertidae) species complex. Amphib-reptil. 26, 239–256. 

[4] Podnar, M., Haring, E., Pinsker, W. & Mayer, W. 2007 Unusual origin of a nuclear pseudogene in 

the Italian wall lizard: intergenomic and interspecific transfer of a large section of the 

mitochondrial genome in the genus Podarcis (Lacertidae). J. Mol. Evol. 64, 308–320. 

[5] Salvi, D., Harris, D. J., Kaliontzopoulou, A., Carretero, M. A. & Pinho, C. 2013 Persistence across 

Pleistocene ice ages in Mediterranean and extra-Mediterranean refugia: phylogeographic insights 

from the common wall lizard. BMC Evol. Biol. 13, 147. 

[6] Podnar, M. 2004 Mitochondrial phylogeography of the Dalmatian wall lizard, (Lacertidae). Org. 

Divers. Evol. 4, 307–317. 

[7] Nembrini, M. & Oppliger, A. 2003 Characterization of microsatellite loci in the wall lizard Podarcis 

muralis (Sauria: Lacertidae). Mol. Ecol. Notes 3, 123–124. 

[8] Heathcote, R. J. P., Dawson, D. A. & Uller, T. 2014 Characterisation of nine European wall lizard 

(Podarcis muralis) microsatellite loci of utility across sub-species. Conserv. Genet. Resour. 7, 85–

87. 

[9] Boudjemadi, K., Martin, O., Simon, J.-C. & Estoup, A. 1999 Development and cross-species 

comparison of microsatellite markers in two lizard species, Lacerta vivipara and Podarcis muralis. 

Mol. Ecol. 8, 518–520. 

[10] Pinho, C., Sequeira, F., Godinho, R., Harris, D. J. & Ferrand, N. 2004 Isolation and characterization 

of nine microsatellite loci in Podarcis bocagei (Squamata: Lacertidae). Mol. Ecol. Notes 4, 286–

288. 

[11] Schulte, U. 2008 Die Mauereidechse. Erfolgreich im Schlepptau des Menschen. Bielefeld: Laurenti-

Verlag. 

[12] Koen, E. L., Garroway, C. J., Wilson, P. J., Bowman, J. & Bersier, L.-F. 2010 The Effect of Map 

Boundary on Estimates of Landscape Resistance to Animal Movement. PloS one 5, e11785. 

[13] Schulte, U. 2008 Die Mauereidechse. Erfolgreich im Schlepptau des Menschen. Bielefeld: Laurenti-

Verlag. 



[14] Phillips, S. J., Dudík, M. & Schapire, R. E. 2004 A Maximum Entropy Approach to Species 

Distribution Modeling. In Proceedings of the twenty-first international conference on Machine 

learning (ed. C. Brodley), pp. 655–662. New York, NY: ACM. 

[15] Phillips, S. J., Anderson, R. P. & Schapire, R. E. 2006 Maximum entropy modeling of species 

geographic distributions. Ecol. Model. 190, 231–259. 

[16] Phillips, S. J. & Dudík, M. 2008 Modeling of species distributions with Maxent: new extensions 

and a comprehensive evaluation. Ecography 31, 161–175. 

[17] Merow, C., Smith, M. J. & Silander, J. A. 2013 A practical guide to MaxEnt for modeling species’ 

distributions. What it does, and why inputs and settings matter. Ecography 36, 1058–1069. 

[18] Royle, J. A., Chandler, R. B., Yackulic, C. & Nichols, J. D. 2012 Likelihood analysis of species 

occurrence probability from presence-only data for modelling species distributions. Methods Ecol 

Evol 3, 545–554. 

[19] Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., Veran, 

S. & O’Hara, R. B. 2013 Presence-only modelling using MAXENT. When can we trust the 

inferences? Methods Ecol Evol 4, 236–243. 

[20] Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. 2011 A statistical explanation 

of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. 

[21] Beninde, J., Feldmeier, S., Werner, M., Peroverde, D., Schulte, U., Hochkirch, A. & Veith, M. 2016 

Cityscape genetics: structural vs. functional connectivity of an urban lizard population. Mol. Ecol. 

25, 4984–5000. 

[22] Burnham, K. P. & Anderson, D. R. 2002 Model Selection and Multimodel Inference: A Practical 

Information-theoretic Approach. New York: Springer International Publishing. 

[23] Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, Jaime R. García, 

Gruber, B., Lafourcade, B. & Leitão, P. J. et al. 2013 Collinearity: a review of methods to deal with 

it and a simulation study evaluating their performance. Ecography 36, 27–46. 

[24] Brown, J. L. & Anderson, B. 2014 SDMtoolbox: a python-based GIS toolkit for landscape genetic, 

biogeographic and species distribution model analyses. Methods Ecol Evol 5, 694–700. 

[25] Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, 

M., Heckmann, I., Scharf, A. K. & Augeri, D. M. et al. 2013 The importance of correcting for 

sampling bias in MaxEnt species distribution models. Diversity Distrib. 19, 1366–1379. 

[26] Qiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L. & Escobar, L. E. 2015 NicheA. Creating 

Virtual Species and Ecological Niches in Multivariate Environmental Scenarios. Ecography 39, 1–

9. 

[27] Elith, J. & Graham, C. H. 2009 Do they? How do they? Why do they differ? - on finding reasons for 

differing performances of species distribution models. Ecography 32, 66–77. 

[28] Lobo, J. M., Jiménez-Valverde, A. & Real, R. 2008 AUC. A misleading measure of the performance 

of predictive distribution models. Global Ecol. Biogeogr. 17, 145–151. 

[29] Anderson, R. P., Lew, D. & Peterson, A.T. 2003 Evaluating predictive models of species’ 

distributions. Criteria for selecting optimal models. Ecol. Model. 162, 211–232. 

[30] Liu, C., White, M., Newell, G. & Pearson, R. 2013 Selecting thresholds for the prediction of species 

occurrence with presence-only data. J. Biogeogr. 40, 778–789. 

[31] Liu, C., Newell, G. & White, M. 2016 On the selection of thresholds for predicting species 

occurrence with presence-only data. Ecol Evol 6, 337–348. 





















cities and 

clusters

N ind. 

(Q >0.8)

N admixed 

(Q <0.8)

haplotypes of ind. 

(Q >0.8)

new 

haplotype 

(0.2>Q >0.8)

pi-diversity 

(cytb )

allelic 

richness
He

Trier 131 92 0.2%

TR_1 51 34 EF - 0.1% 3.40 0.578

TR_2 40 36 EF - 0.2% 4.50 0.688

TR_3 40 12 EF - 0.1% 4.63 0.700

Saarbrücken 98 99 2.4%

SB_1 10 5 EF, SA, WF - 3.1% 3.27 0.670

SB_2 17 19 EF, SA - 1.8% 4.60 0.780

SB_3 22 14 EF - 0.1% 4.04 0.691

SB_4 15 4 EF, WF SA 1.4% 3.37 0.665

SB_5 12 9 EF, SA, WF - 2.5% 4.47 0.802

SB_6 17 10 EF, SA - 0.6% 3.48 0.701

SB_7 6 10 EF, SA - 2.5% 3.44 0.677

Mannheim 108 95 1.8%

MA_1 9 24 SA EF, VE 0.0% 3.46 0.690

MA_2 14 20 SA VE, WE 0.0% 2.84 0.610

MA_3 30 39 EF, SA - 0.4% 3.42 0.656

MA_4 13 9 EF, SA, WF - 2.4% 3.97 0.700

MA_5 11 35 SA EF 0.4% 3.25 0.668

MA_6 31 11 VE EF, SA 0.0% 3.40 0.649

Freiburg 180 23 3.1%

FR_1 17 7 SA, WF EF 1.8% 3.55 0.692

FR_2 19 9 SA, TU, VE EF 2.4% 4.45 0.738

FR_3 40 1 EF, SA, TU, VE - 2.6% 5.13 0.786

FR_4 22 2 EF TU 0.2% 3.80 0.734

FR_5 44 17 EF, TU SA 2.0% 3.47 0.695

FR_6 27 10 EF, SA, TU, WF - 2.5% 5.33 0.791

Table S1: Composition of evolutionary lineages and quantification of genetic diversity for 

clusters of all cities. Lineage are codes with EF: Eastern France, SA: Southern Alps, VE: Venetian, 

TU: Tuscany, WF: Western France.  



A

N prop. N prop. N prop. N prop.

admixture-type 0 75 100.0% 0 0.0% 7 10.3% 0 0.0%

admixture-type 1 0 0.0% 0 0.0% 15 22.1% 0 0.0%

admixture-type 2 0 0.0% 20 30.8% 44 64.7% 2 8.7%

admixture-type 3 0 0.0% 45 69.2% 2 2.9% 21 91.3%

total 75 65 68 23

B

N prop. N prop. N prop. N prop.

admixture-type 0 155 100.0% 0 0.0% 0 0.0% 0 0.0%

admixture-type 1 0 0.0% 0 0.0% 0 0.0% 0 0.0%

admixture-type 2 0 0.0% 0 0.0% 17 100.0% 3 17.6%

admixture-type 3 0 0.0% 55 100.0% 0 0.0% 14 82.4%

total 155 55 17 17

Table S2: Admixture-types of individuals in all cities at higher number of K 's (A) and ∆K =max (B). 

Admixture-types are defined by the genetic composition of parental clusters: type 0 of two same 

lineage clusters; type 1 of two different lineage clusters; type 2 of a hybrid swarm cluster and a 

single lineage cluster; type 3 of two hybrid swarm clusters.

Trier (TR) Saarbrücken (SB) Mannheim (MA) Freiburg (FR)

Freiburg (FR)Mannheim (MA)Saarbrücken (SB)Trier (TR)



City environmental factor k AICc ∆AICc R2m R2c

Trier PO-optim model 4 -47595.07 0.10 0.31

TR Water cover 3 -47592.07 3.00 0.09 0.30

Slope 4 -47542.06 53.02 0.13 0.35

Substrate 5 -47516.33 78.74 0.09 0.31

Traffic 4 -47516.01 79.06 0.05 0.27

Canopy cover 3 -47483.31 111.76 0.05 0.27

Walls 3 -47480.63 114.44 0.05 0.28

Buildings 3 -47479.37 115.70 0.05 0.27

Roads 3 -47477.07 118.01 0.05 0.28

Railway tracks 3 -47475.45 119.62 0.04 0.26

Structural diversity 5 -47475.36 119.71 0.04 0.26

Distance 2 -47474.88 120.19 0.03 0.26

Aspect 9 -47454.56 140.51 0.06 0.28

Vegetation type 5 -47317.59 277.48 0.27 0.54

Null 1 -46863.21 731.86 0.00 0.24

Saarbrücken Vegetation type 5 1535.14 0.04 0.06

SB Traffic 4 1542.43 7.29 0.03 0.06

Water cover 3 1544.76 9.63 0.03 0.06

Buildings 3 1554.77 19.63 0.03 0.06

Distance 2 1555.59 20.45 0.03 0.06

Railway tracks 3 1555.59 20.45 0.03 0.06

Canopy cover 3 1556.43 21.30 0.03 0.06

PO-optim model 4 1556.83 21.69 0.03 0.06

Roads 3 1557.46 22.32 0.03 0.06

Walls 3 1557.63 22.49 0.03 0.06

Structural diversity 6 1558.98 23.84 0.03 0.06

Aspect 6 1563.72 28.59 0.03 0.07

Substrate 5 1582.81 47.67 0.03 0.07

Null 1 1683.36 148.22 0.00 0.02

Mannheim Water cover 3 -36899.77 0.66 0.98

MA Substrate 5 -36653.92 245.85 0.61 0.88

Railway tracks 3 -36450.10 449.67 0.61 0.87

PO-optim model 4 -36275.89 623.88 0.48 0.69

Vegetation type 5 -36201.37 698.40 0.66 1.00

Traffic 4 -35479.32 1420.45 0.66 0.97

Roads 3 -35426.25 1473.52 0.62 0.94

Structural diversity 5 -35292.17 1607.60 0.56 0.83

Canopy cover 3 -35286.24 1613.53 0.21 0.33

Walls 3 -35259.30 1640.47 0.23 0.35

Distance 2 -35253.92 1645.85 0.20 0.33

Buildings 3 -35252.04 1647.73 0.20 0.33

Aspect 6 -35249.45 1650.32 0.20 0.32

Null 1 -32451.82 4447.95 0.00 0.14

Freiburg PO-optim model 4 136040.94 0.41 0.57

FR Railway tracks 3 136166.93 125.99 0.46 0.62

Canopy cover 3 136323.47 282.53 0.37 0.51

Vegetation type 5 136434.96 394.02 0.41 0.58

Aspect 6 136470.40 429.46 0.41 0.58

Traffic 4 136479.69 438.75 0.27 0.42

Table S3: Landscape genetic results and scores of model fit of all cities. Results 

are sorted according to AICc rank within cities. R2m=marginal R²; 

R2c=conditional R². 

scores of model fit



Walls 3 136494.34 453.40 0.43 0.69

Water cover 3 136517.31 476.37 0.27 0.40

Buildings 3 136534.27 493.33 0.25 0.41

Roads 3 136538.78 497.84 0.25 0.39

Distance 2 136538.80 497.86 0.24 0.39

Structural diversity 5 136657.24 616.30 0.29 0.46

Substrate 5 136753.03 712.09 0.38 0.62

Null 1 139753.32 3712.38 0.00 0.16



PO-optim model

Railway tracks 0.295

Substrate -0.291

Structural diversity -0.279

Buidlings -0.250

Walls -0.238

Canopy cover 0.165

Roads 0.146

Aspect 0.126

Vegetation type 0.050

Water cover -0.032

Traffic 0.024

Table S4: Pearson correlations of 

environmental factors and the PO-optim 

model for the city of Freiburg (FR), which 

is the model best explaining gene flow. 



environ.factor #classes class min max median N.cells

Aspect 5 1 1.368 178.289 129.604 2488

Aspect 5 4 2.483 178.289 129.604 1926

Aspect 5 7 1.237 182.924 82.431 34290

Aspect 5 8 2.043 178.289 129.604 300

Aspect 5 10 1.243 178.289 129.604 1410

Buildings 2 0 1.237 182.924 82.431 30667

Buildings 2 1 1.333 182.462 82.431 9747

Canopy cover 2 0 1.237 182.924 82.431 33717

Canopy cover 2 1 1.266 182.743 129.604 6697

Railway tracks 2 0 1.241 182.924 82.431 38517

Railway tracks 2 1 1.237 125.594 1.922 1897

Roads 2 0 1.239 182.924 82.431 27825

Roads 2 1 1.237 182.743 22.484 12589

Structural diversity 4 1 1.355 182.924 82.431 37246

Structural diversity 4 4 1.248 130.274 2.523 783

Structural diversity 4 7 1.237 7.244 2.201 927

Structural diversity 4 10 1.294 178.477 33.669 1458

Substrate 4 0 1.239 182.743 129.604 17110

Substrate 4 2 1.237 182.924 82.431 21789

Substrate 4 6 1.241 35.453 8.324 740

Substrate 4 10 1.299 10.719 1.922 775

Traffic 48 0 1.237 181.210 82.431 37719

Traffic 48 1 1.989 83.498 20.692 86

Traffic 48 2 1.432 174.282 19.039 172

Traffic 48 3 2.814 176.803 17.517 63

Traffic 48 4 1.413 70.399 16.362 42

Traffic 48 5 15.167 174.530 15.167 29

Traffic 48 6 14.276 91.808 14.276 56

Traffic 48 7 1.319 176.959 13.437 123

Traffic 48 8 12.745 12.745 12.745 10

Traffic 48 9 1.248 157.292 12.089 71

Traffic 48 10 1.726 155.411 11.555 34

Traffic 48 11 1.248 152.863 11.046 186

Traffic 48 12 1.307 151.575 10.639 105

Traffic 48 13 10.325 181.612 10.325 18

Traffic 48 14 1.273 181.839 10.021 37

Traffic 48 15 1.302 147.000 9.799 118

Traffic 48 17 1.432 182.387 9.511 47

Traffic 48 18 1.355 144.351 9.371 85

Traffic 48 19 1.465 144.351 9.371 120

Traffic 48 20 1.261 43.799 9.301 33

Traffic 48 21 1.429 182.387 9.371 59

Traffic 48 22 9.441 9.441 9.441 3

Traffic 48 23 9.511 145.015 9.511 41

Traffic 48 25 1.473 147.000 9.872 107

Traffic 48 26 1.676 148.316 10.096 22

Traffic 48 27 1.365 149.625 10.403 43

Traffic 48 29 1.844 153.504 11.213 49

Traffic 48 31 12.273 55.771 12.273 41

Traffic 48 32 12.939 53.098 12.939 41

Traffic 48 33 5.374 13.642 13.642 33

Table S5: Resistance values per subcategory of environmental factors following 

extraction from PO-optim for the city of Freiburg, FR. 



Traffic 48 36 16.611 16.611 16.611 19

Traffic 48 37 1.241 172.429 17.919 32

Traffic 48 38 3.752 19.476 19.476 19

Traffic 48 39 3.140 21.166 21.166 14

Traffic 48 41 1.365 180.463 25.363 37

Traffic 48 45 1.319 182.743 37.874 88

Traffic 48 47 1.629 134.976 2.071 31

Traffic 48 49 58.152 175.804 58.152 30

Traffic 48 50 1.765 179.749 64.918 44

Traffic 48 52 2.751 167.829 79.807 41

Traffic 48 55 3.613 179.901 106.793 45

Traffic 48 57 68.669 131.926 126.928 31

Traffic 48 62 9.946 178.477 170.453 55

Traffic 48 63 61.882 176.406 176.406 34

Traffic 48 64 14.493 180.188 180.188 29

Traffic 48 65 151.300 182.527 182.462 28

Traffic 48 67 2.483 181.361 108.047 41

Traffic 48 69 2.563 182.924 172.386 203

Vegetation type 4 0 1.237 182.924 79.807 23450

Vegetation type 4 3 1.310 182.527 97.640 1396

Vegetation type 4 7 1.289 182.743 169.422 9461

Vegetation type 4 10 1.239 129.604 129.604 6107

Walls 2 0 1.237 182.924 82.431 19413

Walls 2 1 1.239 182.743 82.431 21001

Water cover 2 -10 1.241 182.924 4.532 592

Water cover 2 0 1.237 182.743 82.431 39822



Final 

rank Model

average 

AICc rank

1 Water cover 3.5

2 PO-optim model 3.75

3 Traffic 5

4 Railway tracks 5.25

5 Vegetation type 6

6 Canopy cover 6.75

7 Substrate 8.25

8 Buildings 8.5

9 Walls 9

10 Roads 9.25

11 Distance 10

12 Structural diversity 11

13 Aspect 11.25

14 Null 15

Table S6: Landscape genetic results of all 

cities, sorted by average AICc rank across 

cities. 



mean ± sd mean ± sd mean ± sd mean ± sd

Test AUC 0.792 ± 0.058 0.825 ± 0.067 0.852 ± 0.032 0.852 ± 0.041

Test omission 0.308 ± 0.137 0.217 ± 0.165 0.236 ± 0.072 0.144 ± 0.085

FRMASB TR

Table S7: Evaluation metrics of the SDMs of all cities. Test AUC and test omission (proportion of 

misidentified test presences with respect to maxSSS threshold rule) are presented (mean and 

SD).


