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1 Vertical Configuration

To derive the EOM for the cylinder coupled with the pendulum corresponding to the vertical config-

uration, i.e., the cylinder allowed to vibrate along the gravitational direction, we have isolated the

system from the wake oscillator and replace interaction with it using an external force Sv as shown in

the Fig. 1(i). From Fig. 1(i), the total displacement of the pendulum bob is (L sin θ,−L cos θ + Y ),

where Y is the vertical displacement of the cylinder, L is the length of the massless pendulum rod,

and θ is the angle made by the pendulum rod with the vertical axis. The kinetic energy of this

cylinder-pendulum system can be written as

KE =
M

2

[(
Lθ̇ cos θ

)2
+
(
Lθ̇ sin θ + Ẏ

)2]
+

1

2
mvẎ

2,

=
M

2

[
L2θ̇2 + Ẏ 2 + 2Lθ̇Ẏ sin θ

]
+

1

2
mvẎ

2, (1)
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Figure 1: Schematic of energy extraction through VIV. (i) Vertical configuration. (ii) Horizontal

case.

where M is the mass of pendulum bob and mv is the effective mass of the cylinder including the

added mass from the fluid. The potential energy of this system is given by

PE = −MgL cos θ +
1

2
hvY

2, (2)

where hv is the total effective stiffness of the structure supporting the cylinder. Note that there is a

restoring force resulting from the fluid motion as well and hv includes this stiffness from the fluid as

well. We note that the origin of the coordinate system has been taken at the static displacement of

the cylinder so that the potential energy due to static displacement is absent in the above equation,

i.e., Eq. (2). Having obtained the relevant energies for our system, we can obtain the Lagrangian

of our system as

L = KE− PE,

=
M

2

[
L2θ̇2 + Ẏ 2 + 2Lθ̇Ẏ sin θ

]
+

1

2
mvẎ

2 +MgL cos θ − 1

2
hvY

2. (3)

The equation of motion for the cylinder can be obtained using the following Euler-Lagrange equa-

tion:
d

dt̄

(
∂L
∂Ẏ

)
− ∂L
∂Y

= −rvẎ + Sv, (4)

where −rvẎ is the damping force in the generalized coordinate Y (including dissipation from the

fluid) and Sv is the lift force resulting from the alternating vortices (wakes), see reference [1] for



more details. From Eq. (3), we have

d

dt̄

(
∂L
∂Ẏ

)
=

d

dt̄

[
(mv +M) Ẏ +MLθ̇ sin θ

]
,

= (mv +M) Ÿ +ML
(
θ̇2 cos θ + θ̈ sin θ

)
(5)

and
∂L
∂Y

= −hvY. (6)

Substituting the expressions for
d

dt̄

(
∂L
∂Ẏ

)
and

∂L
∂Y

in Eq. (4), we get

(mv +M) Ÿ + rvẎ + hvY +ML
(
θ̇2 cos θ + θ̈ sin θ

)
= Sv. (7)

Note the presence of θ dependent terms in the above equation which account for the fluctuating

force on the cylinder resulting from the pendulum motion. Similarly the equation of motion for the

pendulum can be obtained as

ML2θ̈ + Cθ̇ +ML(Ÿ + g) sin θ = 0 . (8)

To complete our set of EOMs, we require a wake oscillator model for Sv. The wake oscillator equation

is directly reproduced from Facchinetti et al. [1] with velocity coupling instead of acceleration

coupling, which is

q̈w + ε̄Ωf (q2w − 1)q̇w + Ω2
fqw =

Av

D
Ωf Ẏ , (9)

where ε̄ determines the Van der Pol damping strength, Ωf is the vortex-shedding angular frequency,

Av is nondimensional velocity coupling coefficient and qw is nondimensional wake variable which is

given by qw =
2CL

CL0

, where CL and CL0 are vortex lift coefficient and vortex lift coefficient on a fixed

structure subjected to vortex shedding, respectively. The lift force Sv can be obtained from the

wake variable qw following the definition of the lift coefficient. We have not provided this expression

here as we will be working with the non-dimensionalised equations and hence, prefer to present the

final form of Sv in the non-dimensional terms only.

2 Horizontal Configuration

Similarly when the cylinder is restricted to oscillate perpendicular to the gravitational direction, the

corresponding isolated system is given by Fig. 1(ii). The total displacement of the pendulum bob



is (L sin θ +X,−L cos θ), where X is the horizontal displacement of the cylinder, L is the length of

the pendulum rod and θ is the angle made by the pendulum rod with the vertical axis. The kinetic

energy of the cylinder-pendulum system is

KE =
M

2

[(
Lθ̇ cos θ + Ẋ

)2
+
(
Lθ̇ sin θ

)2]
+

1

2
mvẊ

2,

=
M

2

[
L2θ̇2 + Ẋ2 + 2Lθ̇Ẋ cos θ

]
+

1

2
mvẊ

2. (10)

The potential energy of our system is given by

PE = −MgL cos θ +
1

2
hvX

2 (11)

which results in the following Lagrangian for the structural system:

L = KE− PE,

=
M

2

[
L2θ̇2 + Ẋ2 + 2Lθ̇Ẋ cos θ

]
+

1

2
mvẊ

2 +MgL cos θ − 1

2
hvX

2. (12)

The EOM for the cylinder motion can be obtained from

d

dt̄

(
∂L
∂Ẋ

)
− ∂L
∂X

= −rvẊ + Sv, (13)

where −rvẊ is the damping force in the generalized coordinate X and Sv is the lift force due to

the wake, see reference [1]. From Eq. (12), we have

d

dt̄

(
∂L
∂Ẋ

)
=

d

dt̄

[
(mv +M) Ẋ +MLθ̇ cos θ

]
,

= (mv +M) Ẍ +ML
(
−θ̇2 sin θ + θ̈ cos θ

)
. (14)

and
∂L
∂X

= −hvX. (15)

Substituting the expressions for
d

dt̄

(
∂L
∂Ẋ

)
and

∂L
∂X

in Eq. (13), we get

(mv +M) Ẍ + rvẊ + hvX +ML
(
−θ̇2 sin θ + θ̈ cos θ

)
= Sv . (16)

Similarly the EOM for the pendulum can be obtained as

ML2θ̈ + Cθ̇ +MgL sin θ +MLẌ cos θ = 0 . (17)

The wake oscillator equation with velocity coupling is

q̈w + ε̄Ωf (q2w − 1)q̇w + Ω2
fqw =

Av

D
ΩfẊ. (18)
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