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1. QUASISPECIES MODELS WITH CONSTANT POPULATION: DYNAMICS IN CHEMOSTATS

Eigen’s original model on quasispecies used the so-called constant population (CP) constraint ???. This approach assumes
that self-replicating molecules live in a well-stirred tank reactor (chemostat) and their population is kept constant by means
of a dilution outflux. The CP constraint bounds the growth of the macromolecules also introducing competition between all
of the components of the tank, which compete for available resources (e.g., building blocks or mononucleotides). Within the
framework of origins of life and prebiotic evolution, Eigen conceived the quasispecies model to investigate the dynamics of
biological information. The quasispecies model provides a formal description of the processes of Darwinian evolution of self-
replicating entities. A quasispecies is a cloud of related genotypes that exist under high mutation rates, where a large fraction
of offspring are expected to contain one or several mutations relative to the parent ?. The quasispecies model usually considers
two coupled processes, replication and mutation, following the next two reactions:

• error-free replication of template Ii (that is, a duplication):

(s) + Ii
fiQii−−−−−−→ 2Ii ,

• erroneous replication of template Ii giving place to template Ij 6=i:

(s) + Ii
fiQji−−−−−−→ Ii + Ij .

The symbol s denotes building blocks (e.g., mononucleotides) that are required for replication and that are not considered
explicitly. Error-free replication and mutation are parallel reactions of the same mechanism. The rate of replication, fi, depends
on template Ii; the mutation probability Qji depends on both the template and the product of the replication. We note that∑n
j=1Qji = 1,∀i. In addition, we consider an unspecific degradation or dilution flow Ii → 0, which may be adjusted in such

a way that the total population is of constant size. Here we describe different quasispecies models with different replication-
mutation matrices, A, according to the general quasispecies model. The matrix A here is given by aiQji, thus containing both
fitness and mutation terms of sequence i. The general model is given by:

dx

dt
= Ax− Φ(x)x, (1)

being x = (x0, x1, ..., xn) the vector of population densities for n different sequences. Here Φ(x) denotes the outflow term,
which keeps the population constant. The CP assumption implies that

∑n
i xi = C (usually withC = 1) and since the population

is maintained constant
∑n
i ẋi = 0.

Matrix A corresponds to the so-called replication-mutation matrix, and contains the replication rates (fi) and mutation prob-
abilities (Qji). This matrix can be represented, in its general form, by:

A =


f1Q11 f2Q12 . . . fnQ1n

f1Q21 f2Q22 . . . fnQ2n

...
...

. . .
...

f1Qn1 f2Qn2 . . . fnQnn

 .

In particular if some fi = 0 the related column consists of zeros. Notice that the mutation terms in the diagonal of matrix A
indicate the error-free replication, since they are of the form Qii (i.e., a sequence i produces another sequence i, an exact copy).
All of the other terms denote the mutation processes giving sequence i from sequence j by means of Qij . Depending on the
fitness landscape, the matrix A will have different structures. We notice that for models neglecting backward mutations, the
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FIG. 1. Trans-heteroclinic bifurcation in a model for the survival-of-the-flattest. Schematic diagram of the survival-of-the-flattest effect,
where two different quasispecies compete. The fit quasispecies is located on a sharp, single-peak fitness landscape, while the second quasis-
pecies is located on a flat, single-peak landscape (see ?). (b) Bifurcation diagram for Eqs. (5) obtained increasing mutation rate, µ, using
f
(0)
x = 1, f (1)

x = 0.05, fy = 0.3, and ε = 0. Here, once a critical mutation rate (µc = 0.7) is overcome the system suffers a trans-heteroclinic
bifurcation. We note that the bifurcation value as well as the values of the fixed points do not depend on ε.

replication-mutation matrix is triangular. Equation (1) can indeed be applied to investigate the dynamics of any system of self-
replicating entities (Malthusian replicators) within a chemostat ??. Chemostats have been used to characterize experimentally
the long-term evolutionary dynamics of replicating species such as bacteria ? or yeast ???. In the case of Eigen model ?,
equation (1) can be expressed as:

dxi
dt

=
∑
j

Qijfjxj − xi

∑
j

fjxj

 , (2)

where the matrix elementQij describes the transition probabilities from the type j to the type i. The elements of mutation matrix
are Qij = qL−d(j,i)(1− q)d(j,i). Here q is the probability of error-free replication per nucleotide and replication cycle; L is the
length of the sequence (in number of nucleotides or bits); and d(j, i) is the Hamming distance between sequences j and i; the
diagonal terms of the mutation matrix are Qii = qL ≡ Q ≡ e−γ , where γ = −L ln(q) ≈ N(1− q) is the parameter of mutation
in the Eigen model and fi is identified as a fitness (replication rate) of the sequence i. Here, xi satisfy normalization condition∑
i xi = 1. Within the fields of viral ?? and cancer ?? quasispecies, and when the length of the sequences is not explicitly

introduced, Eqs. (1) and (2) can be also expressed as:

ẋi = (1− µ)fixi + µ
∑
<j>i

fjxj − xiΦ(x). (3)

Here fi is again the replication rate (fitness) of sequence i and µ is the mutation rate (often also expressed as Q = 1 − µ, Q
being the quality replication factor). Notice that here mutation rates are homogeneous for all sequences and differences only
arise in the replication rates, which determine the shape of the fitness landscape. The first RHS term of Eq. (3) is the error-free
replication of sequence i, while the second RHS term is the production of sequence i due to mutation of the nearest neighboring
sequences j (represented by < j >i) of the sequence space.

2. THE TRANS-HETEROCLINIC BIFURCATION IN THE SURVIVAL-OF-THE-FLATTEST

1. Differential equations model

In this section we introduce a mathematical model describing the dynamics of the survival-of-the-flattest effect, analyzed in
ref. ?, which also presents a trans-heteroclinic bifurcation. This model describes the dynamics between a fit quasispecies (x)
located at a sharp, single-peak fitness landscape competing with a less fit quasispecies (y) that is placed at a flatter single-peak
fitness landscape (see Fig. 1a). Under this scenario, quasispecies x replicates faster but it is less robust to mutation. On the
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FIG. 2. Topological changes and dynamics tied to the trans-heteroclinic bifurcation in the survival-of-the-flattest. (a) Phase portraits
with µ = 0.65 < µc (left); µ = µc = 0.7 (middle); and µc < µ = 0.75 (right) using the same parameter values as in (b). The arrows indicate
the direction of the orbits. Stable fixed points are indicated with solid circles while unstable ones are indicated with white circles. The black
line inside the simplexes corresponds to the heteroclinic connection. (b) Time series for each case represented in the phase portraits obtained,
in each panel, with a single initial condition. In all of the panels we used f (0)

x = 1, f (1)
x = 0.05, fy = 0.3, and ε = 0.

contrary, the flat quasispecies displays a lower fitness is more robust to deleterious mutations. With the aim of introducing
a minimal model to analyze the survival-of-the-flattest effect, a master sequence and the pool of mutants were used as state
variables. Under the constant population constraint assumption

∑
i(xi + yi) = 1, the model was defined by the following set of

ODEs:
dx0
dt

= f (0)x Qx0 − x0(Φ + ε),

dx1
dt

= f (0)x (1−Q)x0 + f (1)x x1 − x1(Φ + ε),

dy0
dt

= f (0)y Qy0 + f (1)y y1(1−Q)− y0(Φ + ε), (4)

dy1
dt

= f (1)y Qy1 + f (0)y y0(1−Q)− y1(Φ + ε).

The outflow term is Φ =
∑
i=0,1[(f

(i)
x − ε)xi + (f

(i)
y − ε)yi]. Constants f (0)x > 0 and f (0)y > 0 are the replication rates

of the master fit and master flat sequences, respectively. Parameters f (1)x ≥ 0 and f (1)y > 0 are, respectively, the replication
rates of both mutant sequences for the fit and the flat quasispecies. Here constant Q denotes the average copying fidelity, being
µ = 1 − Q the mutation rate. Finally, 0 ≤ ε � 1 is a degradation rate, assumed to be equal for all of the sequences. The
replication-mutation matrix A for the system Eqs. (4) reads:

A =


f
(0)
x Q− ε 0 0 0

f
(0)
x (1−Q) f

(1)
x − ε 0 0

0 0 f
(0)
y Q− ε f

(1)
y (1−Q)

0 0 f
(0)
y (1−Q) f

(1)
y Q− ε

 ,

To study the survival-of-the-flattest effect we need to set the following parameter relations: f (0)x � f
(1)
x ; and f (1)x < f

(1)
y <

f
(0)
y < f

(0)
x . The previous conditions reproduce the shape of the fitness landscapes displayed in Fig. 1a, considering that the
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FIG. 3. The trans-heteroclinic bifurcation in the survival-of-the-flattest with lethal mutants. (a) Bifurcation diagram considering lethal
mutants for the fit quasispecies, setting f (1)

x = 0. A trans-heteroclinic bifurcation is found at µ = µc = 0.7. The simplex display (from left
to right) the orbits with µ = 0.5 < µc, µ = µc = 0.7, and µc < µ = 0.75. Stable and unstable fixed points for values below and above the
bifurcation are indicated with black and white circles, respectively. (b) Time series for each case represented with the phase portraits in (a)
using a single initial condition. Here we also set f (0)

x = 1, fy = 0.3, and ε = 0.

mutant and the fit replicators of the flat quasispecies have differential fitnesses. However, the dynamical system given by Eqs.
(4) can be reduced to a three-variable model by considering that the changes in fitness due to mutations for the flat quasispecies
are very small. Under this assumption, both master and mutant variables for this quasispecies can be lumped together ?. Hence,
by considering that y = y0 + y1, and fy = f

(0)
y = f

(1)
y (now with f (1)x < fy < f

(0)
x ), and thus ẏ = ẏ0 + ẏ1, the model can be

simplified to:

dx0
dt

= f (0)x Qx0 − x0Φ− εx0,

dx1
dt

= f (0)x (1−Q)x0 + f (1)x x1 − x1Φ− εx1, (5)

dy

dt
= fyy − y(Φ + ε).

Matrix A for this case reads:

A =

 f
(0)
x Q− ε 0 0

f
(0)
x (1−Q) f

(1)
x − ε 0

0 0 fy − ε

 ,

The previous model considered deleterious mutants for the fit quasispecies, since f (1)x < f
(0)
x . Another interesting case that

also presents the trans-heteroclinic bifurcation is to consider that mutants are lethal i.e., f (1)x = 0. For this slightly different
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FIG. 4. Bifurcation diagram and phase portraits for the four-variable quasispecies model given by Eqs. (4). (a) Catastrophic shift
at increasing µ, considering f (0)

x = 1, f
(0)
x = 0.4, fy(0) = 0.8, f

(1)
y = 0.6 and ε = 0.1. The trans-heteroclinic bifurcation is found at

µ = µc = 0.28989795 · · · . The phase portraits display the orbits projected in the simplex (x0, y0) at (a) µ = 0.2 < µc; (b) µ = µc; and (d)
µc < µ = 0.8. Stable fixed points are indicated with black circles. Here as well the equilibrium values do not depend on ε.

fitness landscape, matrix A reads:

A =


f
(0)
x Q− ε 0 0

f
(0)
x (1−Q) −ε 0

0 0 fy − ε

 ,

2. Dynamics and critical thresholds governed by the trans-heteroclinic bifurcation

Let us first explore the simpler case given by equations (5). This system has four fixed points, given by P ∗0 = (0, 0, 0),
P ∗1 = (0, 0, 1), P ∗2 = (0, 1, 0), and P ∗3 = (x∗0, 1− x∗0, 0), with

x∗0 =
f
(0)
x Q− f (1)x

f
(0)
x − f (1)x

.

Notice that the fixed point P ∗0 is not meaningful under the CP assumption since the sum of all of the variables must be equal
to 1. The other fixed points have the following biological meanings: when P ∗1 is stable, the flat quasispecies outcomptes the fit
quasispecies, while when P ∗2,3 are stable, the fit quasispecies outcompetes the flat one. P ∗2 involves that the fit quasispecies is
completely composed of mutant sequences, while P ∗3 ensures coexistence between the master and the mutant sequences of the
fit quasispecies. A sharp bifurcation when mutation rate is increased was characterized for system Eqs. (5) (see ?). For this
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reduced model the bifurcation value is given by

µc = 1− fy

f
(0)
x

. (6)

The bifurcation diagram for Eqs. (5) obtained increasing mutation rate, µ, is displayed in Fig. 1b. Below the critical mutation
rate, µc = 0.7, the fit quasispecies (x0,1) outcompete the flat one at equilibrium. However, a sharp transition occurs at µ =
µc = 0.7, given by a trans-heteroclinic bifurcation. Above this bifurcation, the flat quasispecies is the one dominating the entire
population. The topological changes of the phase space for the bifurcation scenario displayed in Fig. 1b are illustrated in Fig.
2. Here, we represent projections in the simplex (x1, y), and the fixed points involved in the bifurcation are P ∗1 = (0, 0, 1) and
P ∗3 = (x∗0, 1 − x∗0, 0). When µ < µc, P ∗1 is unstable, and the orbits rapidly evolve towards P ∗3 . Notice that the orbits reach the
heteroclinic connection indicated with a thin black line joining the two fixed points. At the bifurcation value, as happened for
the model analyzed in the main manuscript (see Fig. 2 in the main manuscript and ?), the equilibrium state inside the simplex
is given by a line of fixed points that substitute the heteroclinic connection found when µ 6= µc. The time dynamics at the
bifurcation value involves a rapid approach to this line of fixed points, and the equilibrium population depends on the initial
conditions, as a difference from values of µ 6= µc, where the orbits reach an asymptotically, globally stable fixed point (either
P ∗1 or P ∗3 depending on µ, see the time series in Fig. 2). After the bifurcation, the heteroclinic connection is recovered but the
stability nature of fixed points P ∗1 and P ∗3 is interchanged.

Figure 3a displays the bifurcation diagram and the dynamics considering lethal mutants (also with ε = 0). Here we are also
interested in the fixed points P ∗1 = (0, 0, 1) and P ∗3 = (x∗0, 1 − x∗0, 0), where x∗0 = Q for f (1)x = 0. The trans-heteroclinic
bifurcation for this case also takes place when µ = µc = 0.7. Three different simplexes are displayed below, at, and above the
bifurcation. Notice that here we used the projections (x0, y). Since the mutant fit species do not replicate, there exists a smaller
interference on the growth of the fit master sequence. Then, the coordinate x∗0 of the fixed point P ∗3 is larger. Some time series
are also displayed in Fig. 3b. Notice that when µ = 0.5 < µc, the populations of x0 and x1 achieve the same equilibrium value.
At the bifurcation value, as previously discussed, the population equilibrium depends on the initial conditions.

Now we provide some insights into the full model considering the four variables. It is easy to show that the critical mutation
value considering different fitness properties between the master and the mutant flat quasispecies is given by:

µc = 1− f
(0)
y f

(1)
y

f
(0)
y f

(1)
y +

√∏1
i=0(f

(0)
x − f (i)y )f

(i)
y

,

Equation (6) is recovered from the previous expression by setting f (0)y = f
(1)
y = fy . Figure 4 displays the trans-heteroclinic

bifurcation for this case. Note that the transition causes a discontinuous change in the equilibria, and the the flat quasispecies
achieves population values near to 0.5 once the bifurcation takes place. The dynamics represented in the phase portraits of Fig.
4 displays the orbits in the space (x0, y0) flowing towards the heteroclinic connection, which can be clearly seen for the case
µ = 0.2. The orbits at the bifurcation value are asymptotic to the line of fixed points. When mutation rate is further increased,
the heteroclinic connection vanishes (see Fig. 4c).

3. Dynamics near bifurcation threshold: transients and scaling

In this Section we focus on the dynamical behavior near the trans-heteroclinic bifurcation. It is known that transients usually
become longer near bifurcation values ???. Here we investigate the transients for the survival-of-the-flattest model given by
Eqs. (5) previously discussed. The times to extinction (Te) below and above the bifurcation are displayed in Fig. 5. Below the
bifurcation the flat quasispecies becomes extinct, while above the bifurcation the flat quasispecies outcompetes the fit one. For
both cases, and as µ approaches from below and above to µc, Te diverges, and transients become longer and longer as µ→ µc.
The time delay follows a power law dependence on how far the bifurcation parameter µ is below (or above) the bifurcation value
µc. Specifically,

Te ∼ |µc − µ|−1

This scaling dependence is displayed in the insets a and b of Fig. 5. The time dynamics tied to these delays are shown in the
insets c and d of Fig. 5. For the case below the bifurcation, we plot two different time trajectories, using µ = µc − 10−3 and
µ = µc − 10−4. The first case suffers a long delay, and extinction of the flat quasispecies takes plat at t ≈ 104. The second
case, with a slight increase of mutation rate suffers an extremely long delay, being extinction at t ≈ 7.5 × 104. Similar results
are found for the time series obtained setting µ & µc.

As mentioned, transient dynamics near bifurcation thresholds slow down. For instance, pitchfork bifurcations cause the so-
called critical slowing down ?. These delays for saddle-node bifurcations are named delayed transitions, and, for this particular
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FIG. 5. Transient behavior near a trans-heteroclinic bifurcation for the survival-of-the-flattest model. (Main panel) Time-to-extinction
(Te) dependence on mutation rate, µ. Below µc the flat quasispecies, y (blue points), goes to extinction. Above µc the fit quasispecies (black
points) becomes extinct. The upper insets display the power law dependence between the extinction time and the distance to the bifurcation
value (a) below: θb = (µc − µ)−1; and (b) above θa = (µ − µc)

−1 the bifurcation. The lower insets show time series in the vicinity of the
bifurcation. (c) Dynamics below the bifurcation threshold with µ = µc − 10−3 (left trajectory) and µ = µc − 10−4 (right trajectory). Panel
(d) displays the time series above bifurcation with µ = µc + 10−3 (left trajectory) and µ = µc + 10−4 (right trajectory). The insets of panels
c and d display the same trajectories in log-log scale. In all of the panels we used f (0)

x = 1, fy = 0.3, and ε = 0.

case, it is known that the time needed to achieve the remaining stable fixed point scales following the inverse square-root scaling
law, given by (µ− µc)−1/2 ???. The delaying phenomena tied to the trans-heteroclinic bifurcation also involve extremely long
transient in the vicinity of the bifurcation. These delays for the bifurcation studied in this manuscript involve a trans-heteroclinic
relaxation time.

We refer the reader to the Section 2.4. in ref. ? for the analytic derivation of this power law dependence upon bifurcation
distance for the model on cancer phenotypic quasispecies discussed in the main manuscript.
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