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I. PROPERTIES OF THE MINIMAL MODEL

The species and the dynamical equations of the minimal model were specified in the Main part of the paper (see
Sect. 1). The interactions between the species in this model are based on simplified mass-action reactions. Specifi-
cally, the kinetic parameter α (respectively β) quantifies how the presence of auxin (respectively IAA) “degrades” IAA
(respectively ARF) but this is an effective reaction which does not consume the active agent, here auxin (respectively
IAA). This simplification, which enforces the feed-forward nature of the system, facilitates the mathematical analyses
that we now present. Nevertheless, in the last sub-section of this part we shall show that our conclusions hold even
if this simplification is dropped.

A. Steady states

In the steady state, the right hand sides of Eqs.1-3 are set to 0, leading to the following conditions on the steady-
state concentrations:

[auxin]ss = Sauxinτauxin, (S1)

[IAA]ss = SIAA/(α [auxin]ss + 1/τIAA), (S2)

[ARF ]ss = SARF /(β [IAA]ss + 1/τARF ), (S3)

where Sauxin, SIAA and SARF are necessarily time-independent and the “ss” subscript on the concentration of each
species denotes that it is taken in the steady-state.

In the last equation, one may substitute [IAA]ss by its expression in terms of Sauxin or [auxin]ss if desired. If SIAA
is fixed (unregulated case), all the equations are explicit, showing that there is a unique steady-state solution. In the
presence of regulation, SIAA is not a priori known and must also be determined via the steady-state conditions.

B. Ensuring identical steady states for the regulated and unregulated minimal models

In the auxin signaling networks found in various organisms, there is a regulatory feedback [1], i.e., SIAA depends
on [IAA], [ARF ] and even on other molecular species. A hypothetical justification could be that feedback allows for
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multi-stationarity, so Eqs. S1,S2,S3 could have more than one steady-state level of IAA and ARF for a given value
of Sauxin. However that would require a positive feedback, whereas the feedbacks seen in plants correspond to
negative retroactions, i.e., when IAA is increased it lowers the value of SIAA. As a result IAA is considered to act as
a self-inhibitor. As mentioned in the main part of the article, even in the absence of regulation, it is possible to push
the saturation curves in the steady state to large values of the input flux Sauxin. This can be seen by considering Eqs.
S1-S3 in the unregulated model: IAA will become small (compared to its maximum value occurring when Sauxin = 0)
when the incoming auxin flux becomes much larger than S∗auxin = 1/(ατauxinτIAA). By decreasing α, the range in
Sauxin over which the steady state values of [IAA] and [ARF ] avoid saturation can be increased at will, no regulatory
feedback is necessary. But there is a drawback: any dynamical response will be weak whenever the coupling (α) is
small.

What form of regulation will ensure both large α and that the steady-state curves saturate only for large Sauxin? To
make the comparison between the two models (without and with regulation) as fair as possible, we shall impose their
input-output relation curves (cf. Figures 1:B1-B3) to be the exactly the same. Consequently, they will have identical
static properties, and in particular the static response functions will coincide for the two models. To mathematically
define the model with regulation, we take its differential equations to be those of the model without regulation but
introduce two exceptions. First, α in the case of regulation has a larger value, α(reg) � α(no−reg). Second, the
source term SIAA for production of IAA is modified to compensate that change in α, enforcing the whole steady-state
input-output relation to be the same in the regulated and unregulated models. Such a modification can be thought
of as introducing a regulation in the production of IAA, for instance at the transcriptional level. There is still a lot of
freedom for how to make such a regulatory change depend on different molecular species while maintaining exactly
the same steady-state values. For both biological and mathematical reasons, we shall take SIAA to be a function of
only IAA, making IAA a (negative) self-regulator. Comparing the equations with and without regulation in the steady
state, we set the change in IAA production to be equal to the change in IAA consumption, i.e.,

S
(reg)
IAA − S

(no−reg)
IAA = (α(reg) − α(no−reg))[auxin]ss[IAA]ss. (S4)

This choice then ensures that Eq. S2 is satisfied and thus that the steady-state curves of Figures 1:B1-B3 are the
same with and without regulation. However Eq. S4 gives S

(reg)
IAA as a function of both [auxin]ss and [IAA]ss. To

make it only a function of [IAA]ss, we replace [auxin]ss by its steady-state value when expressed in terms of the
steady-state value of [IAA] (cf. Eq. S2). We take this expression to be valid outside of the steady state, leading to:

S
(reg)
IAA ([IAA]) = (α(reg)/α(no−reg))S

(no−reg)
IAA − (α(reg)/α(no−reg) − 1)[IAA]/τIAA. (S5)

This form indicates that at low [IAA] (high auxin-influx rate) the IAA production rate in this regulated model is
enhanced by a factor α(reg)/α(no−reg) compared to the unregulated case. Inversely, when auxin influx vanishes, the
production rate of IAA is the same in the regulated and unregulated cases; this could have been anticipated since
without such influx, α plays no role so one must then have S

(reg)
IAA = S

(no−reg)
IAA . In addition, it is easy to see that

because the production rate decreases as [IAA] increases (as expected since IAA acts as a self-inhibitor), there is a
unique solution to Eq. S2, and so the regulated system does not exhibit any multi-stationarity either. Lastly, plugging
Eq. S5 into Eq. 2, we see that the regulated model is obtained from the unregulated model solely by multiplying the
expression for d[IAA]/dt by the overall factor α(reg)/α(no−reg).

C. Stability of the steady states and effect of regulation

For a given value of Sauxin, the (unique) steady-state concentrations are determined by Eqs. S1-S3. Let us define
−−→
∆C as the vector

−−→
∆C = {∆[auxin],∆[IAA],∆[ARF ]} whose components give the (time-dependent) deviations of

the concentrations from their steady-state values. The linearization of the dynamics (Eqs.1-3) can be specified in
matrix form:

d
−−−−→
∆C(t)

dt
= J
−−−−→
∆C(t). (S6)

In the absence of regulation, this Jacobian J is:

J(non−reg) =

 − 1
τauxin

0 0

−α(no−reg)[IAA]ss − 1
τIAA

− α(no−reg)[auxin]ss 0

0 −β[ARF ]ss − 1
τARF

− β[IAA]ss

 . (S7)
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In these expressions, all concentrations are taken at their steady-state values. In the presence of regulation, the only
change is that the second line is multiplied by the factor α(reg)/α(no−reg):

J(reg) =

 − 1
τauxin

0 0

−α(reg)[IAA]ss − α(reg)

α(no−reg)τIAA
− α(reg)[auxin]ss 0

0 −β[ARF ]ss − 1
τARF

− β[IAA]ss

 . (S8)

Because the Jacobian is tridiagonal, its eigenvalues are given by the diagonal entries. These are all negative,
showing that the steady state is always linearly stable. Furthermore, the steady state is all the more stable that these
eigenvalues are large in absolute value. (Note that the associated characteristic times, generally referred to as the
relaxation times, are given by minus the inverse of these eigenvalues.) We then see from the second eigenvalue that
regulation with α(reg) > α(no−reg) leads to enhanced stability.

D. Regulation’s role in the linear dynamical response functions

The linearized dynamics determine not only the time-dependent behaviour of infinitesimal deviations from the
steady state but also their response to infinitesimal perturbations of the input. Using the same notation as before,
suppose that the auxin source term is allowed to have infinitesimal variations in time:

Sauxin(t) = Sauxin + ∆Sauxin(t). (S9)

The system will respond to these variations in the input via

d
−−−−→
∆C(t)

dt
=
−→
∆S(t) + J

−−−−→
∆C(t), (S10)

where for what follows we shall take
−→
∆S(t) = {∆Sauxin(t), 0, 0} i.e., we focus on perturbations corresponding to

injecting auxin into the system according to an arbitrary time-dependent flux ∆Sauxin(t). Assuming the system is in
its steady state before the perturbation is applied, these equations lead to:

−−→
∆C(t) =

∫ t

−∞
χ(t− t′)

−→
∆S(t′)dt′, (S11)

where the 3× 3 matrix

χ(t− t′) = exp[J(t− t′)], (S12)

for t ≥ t′ is called the linear dynamical response function. (By definition, χ(t − t′) is taken to be 0 for t < t′.) Taking
t ≥ t′, the (ij)’th entry of this matrix, χij(t − t′), can be interpreted as the value of

−−→
∆Ci(t) arising if one applies to

the system in its steady state a delta function pulse for the source
−→
∆Sj at time t′. This dynamical response function

(a matrix function of time) is to be distinguished from the static response function ~R which is a time-independent
vector whose components R1, R2, R3 are simply the derivatives of the steady-state concentrations with respect to
the intensity of the steady-state input:

~R =

{
d[auxin]ss
dSauxin

,
d[IAA]ss
dSauxin

,
d[ARF ]ss
dSauxin

}
, (S13)

It is not difficult to show that:

Ri =

∫ +∞

0

χi1(t− t′)dt′. (S14)

In Figures 1:C2-C3 we display the components χi1(t − t′) (i = 1, 2, 3 and t′ = 0) hereafter denoted χauxin(t),
χIAA(t) and χARF (t), for the models with and without regulation. The case i = 1 provides the time-dependent
response of auxin (which is not affected by regulation in this model). Examining Eq. 1, we see that ∆[auxin] rises
instantaneously by one unit when a perturbation is applied in the form of an instantaneous (delta function at t′ = 0)
pulse of unit integral, and thereafter it simply decays exponentially at rate −J11 = 1/τauxin. If one integrates over
time to have what is called the total response to the pulse, we see that the total response is given by the ratio: total
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input (here equal to 1) divided by the decay rate of the species (auxin); thus the total response of the auxin molecular
species is τauxin.

Consider now the response displayed by the second molecular species, IAA (i = 2). Because the input pulse
increases auxin concentration instantaneously, ∆[IAA] initially decreases linearly with time with a slope −α[IAA]ss.
After reaching a minimum value, it then relaxes back to 0. If the relaxational dynamics of auxin is fast compared to
that of IAA, one can neglect the spontaneous decay of ∆[IAA] for the short time during which the excess auxin is
present. In this approximation, ∆[IAA] will then reach a minimum given by −α[IAA]ss times the total response of
auxin (τauxin). We thus see that −α[IAA]ss plays the role of an amplification factor. As previously stated, [IAA]ss
and similar expressions refer to their steady-state values.

After reaching its minimum, ∆[IAA] will slowly recover, returning to zero roughly exponentially at the rate given by
J22. Interestingly, the total response, defined as for the case of auxin (cf. previous paragraph) via integration of the
response over all times, can be calculated here directly also. Indeed, the equation d∆[IAA](t)/dt = J21∆[auxin](t)+
J22∆[IAA](t) can be integrated, leading to:∫ +∞

−∞
∆[IAA](t)dt =

J21

J22

∫ +∞

−∞
∆[auxin](t)dt. (S15)

As a result, we see that whether there is regulation or not, the integral over time of the dynamical response function
is the same. (Recall that regulation rescales J21 and J22 by the same factor α(reg)/α(no−reg), see expressions S7
and S8). Interestingly, the generality of this result follows from the fact that this total response is given by Eq. S14
which itself depends only on the steady-state concentrations (cf. Eq. S13). Since by construction the input-output
curves are the same with and without regulation, we see that the total response is also the same.

The case of the response displayed by ARF (the third molecular species) can be treated similarly. After an influx
pulse of auxin, ∆[ARF ] will initially rise quadratically in time and then it will reach a maximum. If the relaxation
time of ARF is large compared to the time during which the IAA signal (the perturbation of IAA concentration) is
significant, then this maximum value is approximately −β[ARF ]ss times the total response of ∆[IAA], itself given by
Eq. S15. As a result, this maximum will be insensitive to regulation. If on the contrary the relaxation time of ARF is
comparable to that of IAA or smaller, then the maximum value with regulation will be amplified approximately by a
factor α(reg)/α(no−reg), just as it is for IAA. After reaching its maximum, ∆[ARF ] will decay back to 0. And just as for
∆[IAA], the total ARF response is the same whether there is regulation or not.

E. Modifying the minimal model by using true mass action kinetics

In the minimal model considered so far, auxin degrades IAA but this degradation has no consequence on auxin. In
the same vein, that model lets IAA degrade ARF but without the IAA dynamics being affected. In reality, the actions
arise through the formation of complexes which lead to changing the dynamics of all the molecular actors involved. It
is thus natural to ask whether the conclusions reached in that minimal (and feed-forward) model still hold if one uses
a more realistic description of the dynamics that correctly includes mass-action in the reactions. That is the purpose
of this section. For this extended model to be specified, we have auxin act on IAA by first forming an effective auxin-
IAA complex which mimics the auxin-TIR1-IAA complex. This effective auxin-IAA complex then degrades IAA and
releases auxin, in direct analogy with what happens biochemically. Similarly, to mimic the role of IAA on ARF, we
have them form heterodimers according to mass action kinetics. These heterodimers act in effect to sequester ARF,
just as in the non-minimal models. These changes make a bit more complex the minimal model but for the most part
one can nevertheless study this modified model analytically.

The equations of the minimal model have to be modified to take into account the formation of the auxin-IAA and
ARF-IAA complexes. Furthermore, in the spirit of our new model, we consider that ARF is long lived so that its total
concentration (free plus in the ARF-IAA complex) is fixed. The use of mass action for the formation of complexes
then changes Eqs. 1 - 3:

d[auxin]

dt
= Sauxin − [auxin]/τauxin − α[auxin][IAA] + γ[auxin− IAA], (S16)

d[IAA]

dt
= SIAA − [IAA]/τIAA − α[auxin][IAA]− β[IAA][ARF ] + δ[ARF − IAA], (S17)

d[ARF ]

dt
= −β[IAA][ARF ] + δ[ARF − IAA], (S18)
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where we have also taken into account the choice of no production or degradation of ARF. The new parameters γ
and δ are the dissociation rates of the auxin-IAA and ARF-IAA complexes. The dynamics of the concentration of
auxin-IAA and ARF-IAA complexes adds one additional differential equation:

d[auxin− IAA]

dt
= α[auxin][IAA]− γ[auxin− IAA], (S19)

and also one constraint:

[ARF − IAA] = ARFT − [ARF ] , (S20)

where ARFT is the total concentration of ARF (free or in the ARF-IAA complex). Because of this constraint, we do
not need to follow explicitly the dynamics of [ARF-IAA] in this extended model as it is not an independent quantity.

The steady-state concentrations of the four independent molecular species are readily obtained:

[auxin]ss = Sauxinτauxin, (S21)

[IAA]ss = SIAA/(α [auxin]ss + 1/τIAA), (S22)

[ARF ]ss = ARFT /(1 + β [IAA]ss /δ), (S23)

[auxin− IAA]ss = α [auxin]ss [IAA]ss /γ. (S24)

Note that each equation involves only terms determined from previous equations so the whole system can be solved
by using these equations in the order of appearance.

So far we have implicitly considered no regulation. To include regulation, just as in the feed-forward minimal model,
we rescale α and adjust SIAA so that the steady states remain the same. The procedure used in the feed-forward
model works exactly in the same way, and in fact the expressions for SIAA in the two minimal models are identical
and given in Eq. S4.

Having now defined the sequestrating minimal model with and without regulation, let us consider the steady-state
behaviour for increasing Sauxin. Supplementary Figures S1:A1-A3 shows that the inclusion of the mass action
dynamics (and associated sequestration) does not qualitatively change the dependence of concentrations of auxin,
IAA or ARF on Sauxin (compare these curves to the ones in Figure 1:B1-B3).

What about the linear dynamical response function? To investigate that, we compute the Jacobian matrix giving the
linearized dynamics about the steady state. In contrast to the feed-forward minimal model where the Jacobian was a
3× 3 matrix, here there are 4 molecular species to consider as dynamical variables so the Jacobian is a 4× 4 matrix.
Except for that greater complexity, the framework for computing the response functions is the same. In Supplemen-
tary Figures S1:B1-B3 we show these functions giving the time dependence of the variations in concentrations of
auxin, IAA and ARF when one introduces an infinitesimal pulse of auxin into the system at t = 0.

The conclusion is that again the minimal model with full mass action behaves very much like the feed-forward min-
imal model, the negative feedback showing an amplification in the dynamical response compared to the unregulated
case.

From a biological point of view, note that the release from sequestration allows for a fast response to an auxin
signal, bypassing any (long) times associated with transcription or translation. This feature is shared with the Vernoux
model and also our new model of Sect. 3 in the Main text.
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II. MATHEMATICAL ANALYSIS OF THE MODEL OF VERNOUX ET AL.

[Delete] For the paper to be self-contained, we first recall the differential equations defining the model of Vernoux
et al. [2]. We first discuss how regulation of transcription is included in the model of Vernoux et al. [2] and then we
explain how steady-state values are determined. In the last sub-section, we show how the dynamics of the model
provide a decomposition of the network into modules, without the need for any other information.

A. Rate of transcription

The rate equation of transcription for producing the IAA mRNAs (Eq.(8) in the main text) follows from the thermo-
dynamical framework of Bintu et al. [3]. It involves multiple rates of transcription because Vernoux et al. assume
that there are two AuxREs (auxin response elements) in the regulatory region of the gene coding for IAA. They allow
for a first (basal) level of transcription when that region is free, another one when it is occupied by one ARF, and
a last one when it is occupied by two ARFs. The binding of the heterodimer ARF-IAA to either of the AuxREs is
assumed to shut off transcription, in line with the idea that this heterodimer acts as an inhibitor of transcription. The
final expression used by Vernoux et al. for Eq.(8) is:

h([IAA], [ARF ], [ARF − IAA]) =
1 + f

Bd
[ARF ]

(
1 + ωAfA

Bd
[ARF ]

)
1 + [ARF ]

Bd

(
1 + ωA

Bd
[ARF ]

)
+ ωI

KdBd
[IAA][ARF ] + ωD

Bd
[ARF − IAA] + κ−A

. (S25)

The term κ−A is motivated by the presence of additional species competing for the binding to the regulatory region but
not leading to any transcription. These could be for instance “repressor” ARFs which bind to the AuxRE but do not
recruit the RNA polymerase (ARF repressors are known to exist). Furthermore, f and fA quantify the transcriptional
amplification due to, respectively, one ARF activator and two ARF activators being bound to the regulatory region.
The coefficients ωA, ωI and ωD indicate cooperativity effects stemming from the binding to the DNA of two ARF
activators (ωA) or the formation of dimers (ωI and ωD); Kd and Bd are the dissociation constants for the ARF-IAA
dimerization and the ARF binding to DNA reaction.

[To move to the main] To calibrate their model, Vernoux et al. set decay rates according to experimental data
available on ARF, IAA protein and mRNA lifetimes in Arabidopsis thaliana. Other parameters were estimated after
testing the robustness of the model with respect to variations within biologically acceptable ranges.

[Delete] As explained in the main part of the paper, we further added a reaction to make auxin concentration a
dynamical quantity:

d[auxin]

dt
= Sauxin −

[auxin]

τauxin
. (S26)

B. Steady States

[Here I simply changed the numbers of eqs]
To solve for the steady state(s), we set to 0 the left hand side of Eqs. (4)-(8) and (10) of the main text. A convenient

strategy to solve the resulting equations is to first express all quantities in terms of the concentration of IAA protein.
Based on Eqs. (6) and (7), at steady state one has:

[IAA2]ss =
kII([IAA]ss)

2

k′II + δ∗II + δII(x)
, (S27)

and

[ARF − IAA]ss =
kIA[IAA]ss[ARF ]ss
k′IA + δ∗IA + δIA(x)

. (S28)

It is useful to rewrite these relations as:

k′II [IAA2]ss − kII([IAA]ss)
2 + δII(x)[IAA2]ss = −αII([IAA]ss)

2, (S29)
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k′IA[ARF − IAA]ss − kIA[IAA]ss[ARF ]ss + δIA(x)[ARF − IAA]ss = −αIA[IAA]ss[ARF ]ss, (S30)

with αII =
kIIδ

∗
II

k′II+δ
∗
II+δII(x)

and αIA =
kIAδ

∗
IA

k′IA+δ∗IA+δIA(x) . Then, by plugging Eq. S30 into Eq. (5), one obtains at steady
state:

[ARF ]ss =
πA

δA + αIA[IAA]ss
. (S31)

Thus the steady-state concentrations of ARF, ARF-IAA, and IAA2 are all known in terms of [IAA]ss. As a result, the
rate of production of IAA messenger RNA is also known:

h([IAA]ss, [ARF ]ss, [ARF − IAA]ss) = h

(
[IAA]ss,

πA
δA + αIA[IAA]ss

,
πAαIA([IAA]ss)

2

δ∗IA(δA + αIA[IAA]ss)

)
. (S32)

Eq. (8) then provides the concentration of IAA messenger RNA. As a result, knowing the concentration of IAA protein
determines the steady-state concentrations of all the other species, as promised.

To obtain now the steady-state concentration of IAA protein, we enforce equality of IAA production rate (given by
πI [IAAm]ss where [IAAm]ss is known in terms of [IAA]ss) and IAA total decay rate. This total decay rate is the sum
of the degradation rates of IAA in all of its different forms. Using Eq. (4) and the previously derived equations, this
total decay rate is:

2αII([IAA]ss)
2 + δI(x)[IAA]ss + δII(x)[IAA2]ss + αIA[IAA]ss[ARF ]ss + δIA(x)[ARF − IAA]ss, (S33)

where again all quantities are to be re-expressed in terms of [IAA]ss. The associated self-consistent equation can
be described graphically by having [IAA]ss on the x-axis and by putting on the y-axis (i) the rate of production of
IAA protein and (ii) the total decay rate of IAA protein. Where these two curves cross gives the value of [IAA] in the
steady state. The solution is unique in the Vernoux model because the first curve is strictly decreasing (the feedback
loop is negative) while the second curve is strictly increasing (the more IAA is present, the more it gets degraded).

C. The dynamics provide an a posteriori decomposition of the network into modules

To define their dynamical equations, the authors of the Vernoux model [2] used the quasi-steady-state approxima-
tion to replace the ubiquitination pathway by effective rates for the degradation of IAA (cf. in particular Eqs. 4 and
??). Might it be possible to use this kind of approximation to further reduce their model? The linearized dynamics
provides a systematic way to do so since each eigenmode of the Jacobian has a characteristic relaxation time. If
we focus on the fastest relaxing mode in the Vernoux model, we find that it mainly involves ARF and ARF-IAA.
This means that the kinetic coefficients for the formation and dissociation of ARF-IAA are large so one may use the
quasi-equilibrium approximation for that reaction. One could thus replace the Vernoux model by a simpler one where
ARF and ARF-IAA are no longer dynamical quantities but are given by Eqs. S31 and S28. To reduce still further
the complexity of the model, we can consider the next mode, associated with the second shortest relaxation time.
This eigenmode involves mainly IAA and IAA2. Thus using the same approach one may decide to have IAA2 be in
quasi-equilibrium with IAA and remove it as a dynamical variable. This leads us to ask what is the role of IAA2 in the
Vernoux model in the next sub-section.

D. Role of IAA homodimer

A sensible guess for the role of the IAA homodimer is that it may act as a kind of reservoir to buffer or delay the
response to changes in auxin concentrations. To investigate this question, we have taken the Vernoux model and
modified it so that there is no longer any formation of IAA2 (this can be done for instance by simply setting kII = 0).
Just as when we compared the Vernoux model with and without regulation, it is necessary here to adjust some
of the rates for the steady states to be nearly the same with and without IAA homodimer. It is possible to do so
as shown in the Supplementary Figure S2. Given that property of the steady-states, we can of course look at the
dynamical properties. Supplementary Figure S2 shows that one consequence of removing the formation of IAA2 is to
quicken the response to an auxin perturbation. A second consequence is to increase the amplitude of the associated
dynamical response. Both of these features seem desirable in a signaling network, justifying why in our new model,
we have opted for no homodimerization of IAA.
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E. Resilience in the Vernoux model

Characteristic resilience times in the Vernoux model were obtained by applying specific perturbations to the system
and seeing when the amplitudes of the responses were down by a given factor. We did these measurements in the
Vernoux model, both with and without the negative feedback. Illustrative results are given in Supplemental Table S1.
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III. QUALITATIVE AND QUANTITATIVE ASPECTS OF OUR NEW CALIBRATED MODEL OF AUXIN SIGNALING

As mentioned in the Main part of the paper, the model is available on the BioModels repository. The first sub-
section explains the bioinformatic search for AuxREs motifs in Arabidopsis IAA regulatory regions. The second and
third sub-section cover the mathematical aspects of our model. The forth provides details on the calibration of the
resulting model while the actual numerical values of the 17 parameters are given in Supplemental Table S3.

A. Scanning the Arabidopsis IAA regulatory regions for AuxREs and analysis of their clustering

Auxin Response Factors are transcription factors and as such they regulate other genes. Interestingly, they also
are involved in IAA transcriptional regulation. In Arabidopsis, 23 different ARFs have been identified in the past few
decades among which 5 seem to act as activators of IAA transcription (ARF5-8 and 19) while others are believed
to act as repressors [4]. As previously discussed, ARFs can directly interact with IAA to form a hetero-dimer; that
hetero-dimer probably competes with ARF in binding to AuxRE, and may act as an inhibitor of transcription. The
putative static network underlying ARF and IAA interactions is given in ref. [2].

In this system, activators normally initiate transcription by binding to the Auxin Response Elements (AuxRE) up-
stream of the region coding for IAA. ARFs generally consist of a DNA Binding Domain (DBD) that recognises the
consensus sequence TGTCTC along the DNA [5]. This binding motif has been further refined during the past years
by both directed mutation experiments [6] and bioinformatic searches [7], leading to the construction of specific Po-
sition Weight Matrices (PWMs). ARF23 is the only exception and it is made of a truncated DBD [4]. All the other
ARFs show furthermore a domain associated with their function as activators or repressors of transcription [8]. In
ARF 1-12, 14-15 and 18-22, that domain is connected to two other ones, called III and IV, which allow binding to IAA
and some other ARFs [4]; those two domains are the key domains for ARFs to form hetero- and homo-dimers. As we
previously discussed, IAA binding ARFs prevents transcriptional activation. Activator ARFs can initiate transcription
and are expected to bind DNA as monomers or dimers [6]. Binding by the dimer should be preferred to binding by
the monomer if the AuxRE allows it [6]. However, a scan of the upstream regions of the 21 Arabidopsis IAA genes,
searching for the AuxRE consensus sequences, did not show the existence of any pairs of positions allowing for
binding via ARF homo-dimerization, i.e., consensus motifs were not found to be separated by about 10 nucleotides
(one helix turn), other than in one case (Table S2). A refinement of such an analysis by using PWMs instead of the
consensus sequence overcomes the constraint of requiring the presence of the exact consensus sequence. This
can be done, e.g., via available open source programs which, given a PWM, allow one to score sequences and
return a p-value for each position detected as significant [9]. In our specific case, we wrote a shell script to scan
PWMs against the 21 Arabidopsis IAA upstream sequences. For completeness, we compared the obtained scores
with those generated by scanning the same PWMs against reshuffled sequences: the program selects then as “true
AuxRE” all those positions whose scores were higher than the highest random one. This allows one to get a set
of positions labeled as AuxREs and potentially corresponding to true binding sites. In order to probe the possibil-
ity of binding by homo-dimers, we determined whether the distance between two subsequent motifs is close to 10
nucleotides (corresponding to a full turn of the DNA). Motivated by what is seen from the crystal structures [6], one
can also expect the homodimers to have mirror symmetry in which case the paired AuxREs should be oppositely
oriented (Figure 3:B). In our analysis of the sequences, we used two different PWMs, respectively from [6] and [7],
from which we identified 16 and 38 hits (Figures 3:C1-C2 and C3-C4 respectively). A study of the distances between
hits did not show any signal indicating presence of adjacent binding sites and thus we found no evidence in favour of
homodimerization. This is quite in agreement with the results previously found by [10]. Such a divergence between
that work and the indications from crystal structures leads to a puzzle in ARFs homo-dimer vs monomer DNA binding
that might be sorted out with further experiments in the next few years. For the moment, in our model, we shall take
into account both choices, where binding arises via a monomer or a dimer of ARF.

It remains an open question still which is the way ARFs bind to the AuxREs of the regulatory regions of IAA genes.
In this regard, we shall consider in our modeling both possibilities, having transcription activation via ARF monomers
or dimers.

Along with homo-dimerization, it has been recently proposed that ARFs may be able to form higher order com-
plexes, e.g. in the form of oligomers [11]. In this scenario, both activators and repressors might participate together
in binding the DNA; it would be interesting to study which are the consequences of oligomerization on the functioning
of the system, either focusing on the ARF and IAA species or more generally within a full network including auxin
signaling components.
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B. The dynamical equations for each molecular species

The dynamical equations of our model are as follows. IAA transcription is described via the reaction:

∅ λ1F1−−−→ mRNA, (S34)

where F1 is a function of [ARF ] and [ARF − IAA] (the two species which can bind to the AuxRE) and λ1 is the
rate of IAA mRNA production when the AuxRE is bound by an ARF (monomer) molecule. F1 is in fact the probability
that ahe AuxRE is bound by an ARF transcription factor; its functional form reflects an underlying thermodynamic
equilibrium. Explicitly, we take the choice made in [12] and adapt it to our setting so that:

F1([ARF ], [ARF − IAA], [ARF2]) =

[ARF ]
θARF

1 + [ARF ]
θARF

+ [ARF−IAA]
θARF−IAA

+ [ARF2]
θARF2

. (S35)

Transcription requires that the AuxRE be bound by ARF. Note that ARF-IAA acts as a competitive binder and that
when it is bound there is no transcription. These IAA messenger RNAs have a finite lifetime:

IAAm
µIAAm−−−−−→ ∅. (S36)

This reaction proceeds at the rate µIAAm
times the concentration of the IAA messengers. The messengers are also

used as templates for translation, leading to the production of IAA proteins. For the purpose of the modeling, the
multiple steps involved in translation are simply coarse grained into one bulk reaction, i.e.:

IAAm
δ−→ IAAm + IAA, (S37)

with a rate δ times the concentration of the IAA messenger. IAA degradation can arise via two routes: spontaneous,
corresponding to a natural lifetime of the protein, or active, catalyzed by auxin-dependent biochemical processes.
The spontaneous route is relevant mainly for very low concentrations of auxin and the corresponding rate parameter
is µIAA:

IAA
µIAA−−−→ ∅. (S38)

The active degradation process depends on the formation of complexes containing auxin and its receptor TIR1.
Auxin can bind to TIR1 proteins to form an auxin-TIR1 complex, which in turn may bind IAA. In this complex, IAA is
then ubiquitinated, that is some of the protein’s residues become tagged, changing IAA into IAA∗. The set of these
reactions reads as in ref. [12]:

auxin+ TIR1
ka−⇀↽−
kd

auxin− TIR1,

auxin− TIR1 + IAA
la−⇀↽−
ld
auxin− TIR1− IAA,

auxin− TIR1− IAA lm−→ IAA∗ + [auxin− TIR1],

IAA∗
µIAA∗−−−−→ ∅.

(S39)

In the spirit of keeping the model relatively simple, we use mass action to describe all the kinetics of formation and
dissociation of complexes. The other complexes in our model are the ARF-IAA and ARF2 dimers, corresponding to
the processes:

ARF + IAA
pa−⇀↽−
pd

ARF − IAA, (S40)

where pa and pd are respectively the association and the dissociation rates of this heterodimer. Similarly, we have:

ARF +ARF
qa−⇀↽−
qd

ARF2, (S41)

where qa and qd are respectively the association and the dissociation rates of the ARF homodimer.
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As mentioned in the previous section, the total concentration of ARF is considered to be fixed to some given
amount ARFT = [ARF ] + 2[ARF2] + [ARF − IAA]. The same holds for TIR1 molecules, with TIRT = [TIR1] +
[auxin− TIR1] + [auxin− TIR1− IAA].

Lastly, we assume that auxin is pumped into the system at a rate Sauxin:

∅ Sauxin−−−−→ auxin. (S42)

Since auxin is introduced into the system, it must also be either evacuated or degraded. We choose the latter option,
introducing an effective lifetime (independent of the cell’s state):

auxin
µauxin−−−−→ ∅, (S43)

where µauxin = 1/τauxin. The union of all these processes allows us now to completely specify the model math-
ematically based on a set of ordinary differential equations for the time dependence of the concentration of all 10
molecular species:

d[IAAm]

dt
= λ1F1 − µIAAm

[IAAm]

d[IAA]

dt
= δ[IAAm]− µIAA[IAA]− la[IAA][auxin− TIR1]

+ ld[auxin− TIR1− IAA]− pa[ARF ][IAA]

+ pd[ARF − IAA]

d[TIR1]

dt
= −ka[auxin][TIR1] + kd[auxin− TIR1]

d[auxin− TIR1]

dt
= ka[auxin][TIR1]− kd[auxin− TIR1]

+ (ld + lm)[auxin− TIR1− IAA]− la[auxin− TIR1][IAA]

d[auxin− TIR1− IAA]

dt
= la[IAA][auxin− TIR1]− (ld + lm)[auxin− TIR1− IAA]

d[IAA∗]

dt
= lm[auxin− TIR1− IAA]− µIAA∗ [IAA∗]

d[ARF ]

dt
= −2qa[ARF ]2 + 2qd[ARF2]− pa[ARF − IAA] + pd[ARF ][IAA]

d[ARF − IAA]

dt
= pa[ARF ][IAA]− pd[ARF − IAA]

d[ARF2]

dt
= qa[ARF ]2 − qd[ARF2]

d[auxin]

dt
= Sauxin + kd[auxin− TIR1]− ka[auxin][TIR1]− µauxin[auxin]

, (S44)

Our goal is to study how the concentration of IAA and of the driving factor ARF are affected by changes in auxin
influx. Having specified the model in a formal way, it still has to be calibrated, i.e., its 17 parameters must be set, 15
being associated with rates, the two remaining being respectively the total amount of ARF and the total amount of
TIR1.

C. Determining the steady states

We follow the strategy previously used to compute the steady states in the simpler models: we first express all
concentrations in terms of that of IAA and then we derive the self-consistent equation for [IAA]ss. Although the
expressions of all the different quantities in terms of [IAA]ss are complicated, at the end one obtains one self-
consistent equation for [IAA]ss which is easily solved numerically. To illustrate the successive steps, begin by
imposing the steady-state condition on the complexes involving ARF. This leads to:

[ARF − IAA]ss = P [ARF ]ss[IAA]ss

[ARF2]ss = Q[ARF ]2ss
, (S45)



12

where P = pa/pd and Q = qa/qd. By using the conservation law for total amount of ARF protein, one gets:

ARFT = P [ARF ]ss[IAA]ss + [ARF ]ss + 2Q([ARF ]ss)
2, (S46)

which has a unique positive solution for [ARF ]ss as a function of [IAA]ss. Furthermore, since [ARF ]ss and [ARF −
IAA]ss are known in terms of [IAA]ss, the same holds for [IAAm]ss.

Consider now the ubiquitination module. The steady-state conditions on the concentrations [auxin− TIR1]ss and
[auxin− TIR1− IAA]ss lead to:

[auxin− TIR1]ss = K
Sauxin
µaux

[TIR1]ss

[auxin− TIR1− IAA]ss = L[IAA]ss[auxin− TIR1]ss =
LKSauxin
µaux

[IAA]ss[TIR1]ss

, (S47)

where we use the notation of ref. [12]: K = ka/kd and L = la/(ld + lm). Note that we also used the steady-state
expression for auxin concentration, [auxin]ss = Sauxin/µaux. As TIR1 total concentration is fixed too, one can use
the same logic as before, leading to:

TIR1T = [TIR1]ss +
KSauxin
µaux

[TIR1]ss +
LKSauxin
µaux

[IAA]ss[TIR1]ss, (S48)

whose solution for TIR1 can be expressed in terms of the parameters and [IAA]ss. We will denote this relation by
[TIR1]ss = g([IAA]ss).

Now that the concentrations of all species have been determined in terms of that of IAA, the self-consistent
equation for [IAA]ss is obtained by imposing that the rate of production of IAA protein (translation) is equal to its
(passive and active) decay rate. This gives immediately:

λ1δ

µIAAm

F1([IAA]ss) = µIAA[IAA]ss + (la − ldL)
KSauxin
µaux

[IAA]ssg([IAA]ss). (S49)

The graphical representation of this self-consistent equation is provided in Figure 4:A. Just as for the Vernoux
model, by monotonicity of the two curves there exist a unique solution for the steady-state concentration of IAA.
We can compute it numerically for any given set of parameters and auxin influx rate Sauxin. Then, by plugging the
solution obtained for [IAA]ss into the other equations, one obtains all steady-state concentrations in the network
(Figures 4:B1-B3). The behaviors of auxin, IAA and ARF concentrations as a function of Sauxin are qualitatively the
same as in the models analyzed in the previous sections.

D. Model calibration and use of diffusion limited reactions

The values of all 17 parameters of our new calibrated model are provided in Table S3. They are also given in the
model definition in the BioModels repository. The setting of these values rested on estimates from published works
such as [13, 14], constraints coming from measurements of equilibrium constants, and theoretical bounds for “on”
rates. This last type of constraint is not commonly used so we now explain in detail how it arises and can be used.

The rate kon in any reaction cannot be arbitrarily large because it is necessarily bounded from above by the so
called “diffusion limit”. To understand where this limit comes from, consider a reaction A + B which produces C.
Motivated by the case where B is an enzyme, for pedagogical purposes consider that B is at a given point and that
the A molecules diffuse throughout the cell volume. A necessary condition for forming a C molecule is the encounter
or “collision” of an A molecule with B. The number of collisions per unit time felt by B, kS , can be computed [15] and
it is referred to as the Smoluchowski encounter rate:

kS = 4πDARtρA, (S50)

where DA is the diffusion constant of the A molecules, Rt is the radius of the target zone “offered” by B for the
reaction and ρA is the density of A molecules in the cell volume. Note that kS does not have the same dimensions
as kon: indeed kS gives the number of collision per unit of time while kon has dimensions 1/(M · s). To relate kS to
kon, one must first use the definition of kon:

d[C]

dt
= kon[A][B]− koff [C], (S51)
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and then convert from numbers of molecules per unit volume to concentrations in moles per liter, giving [A] =
nA/NAVcell, where nA is the number of molecules of A in the cell, NA is Avogadro’s number and Vcell is the cell
volume expressed in litres.

Analogously, since we took one molecule of B in the cell, one obtains [B] = 1/NAVcell. Plugging these expressions
into the differential equation for [C] and using kS one finally gets:

kon = 1000NA4πDARt. (S52)

The Einstein-Smoluchowski relation and Stokes’ equation for mobilities of spheres in viscous liquids allow one to
give an estimate of the diffusion constant, DA = kBT/6πηRA, where η is the viscosity of the liquid and RA is the
radius of the molecule. Inserting this relation in the previous one for kon one gets:

kon = 1000NA
2

3

kBT

η

Rt
RA

. (S53)

Recall that Rt is the radius of the contact region offered by B for the reaction. For most reactions it is believed to
be typically Rt ' 1 − 2 nm. For our derivation, we assumed B did not diffuse. If instead both A and B molecules
diffuse, the relation is modified by considering as the diffusion constant the sum of both diffusion constants, DA and
DB . This leads to a final expression for kon given by:

kon = 1000NA
4

3

kBTRt
η

[ 1

RA
+

1

RB

]
. (S54)

For our purposes, we considered T = 298.15K (as in [16]), η = 1.5 · 10−2P for the viscosity of the cytoplasm [17],
and the other known constants also being given by the literature. To determine the characteristic sizes RA and
RB when A and B are ARF and IAA, we first studied their domains using published crystal structures, in particular
the DBD and the III/IV domains for ARFs and the III/IV domains for IAA. We visualized the structures of these
domains using UCSF Chimera [18] to obtain the characteristic size of these molecules. Since each protein is multi-
domain, the estimates of RARF and RIAA require some care. For ARFs, the crystal structures do not furnish any
information about the junction domain between the DBD and the III/IV. We thus assumed this domain to have the
same dimensions as the smallest one, i.e., III/IV. Our approach was to consider the multi-domain molecules as rods
formed by aligning the domains, and to use the result for diffusion of rigid rods obtained computationally in ref. [19].
This approach leads to an effective radius of the protein using Stokes’ law, leading to RARF = 8.75 nm. In the case
of IAA, we assumed the four domains to be all similar to the III/IV ones. The reasoning then led to an equivalent
radius for IAA equal to RIAA ' 3.2nm. Plugging these values and Rt = 2nm into the equation for kon and using
the measurements of the dissociation constants, KD, in ref. [16] allowed us to determine koff . The corresponding
estimates of qa, qd, pa and pd are given in Tab. S3. Setting the other parameters in our new model described in Sect.
3 was possible using estimates from the literature (see in particular ref. [13]) so for instance the value of λ1 was
typical of genes constitutively expressed. Furthermore we used theoretical reasonings, for instance based on the
bounds from the diffusion limit. With all this information it was possible to obtain values for all 17 parameters of this
new model.

E. Complexity reduction via time-scale separation

In this subsection, we ask whether a decomposition of our new model into modules can be obtained automatically
without any a priori biases. To do so we use the separation of time scales approach along with Principal Component
Analysis [20]. Principal Component Analysis is generally used on sets of points in high dimensional spaces to obtain
a lower dimensional projection. In effect, it first builds the multi-Gaussian distribution having the same mean and
covariance matrix as the considered set of points and then it projects the high-dimensional set of points onto the
main principal axes, that is the directions corresponding to the leading eigenvectors of that covariance matrix so
as to maintain the maximum amount of variance. In the method of time-scale separation of a dynamical system,
one can analyze the Jacobian matrix J describing the linearized dynamics about a steady state. When treating the
dynamics of the deviations from the steady-state concentrations, the most general form of these linearized dynamics
can be written as:

d
−−−−→
∆C(t)

dt
= J
−−−−→
∆C(t), (S55)

where
−−−−→
∆C(t) is the variation with respect to the steady-state of the different concentrations in the system. Whenever

the Jacobian matrix is invertible, the previous equation can be integrated in terms of its eigenvalues and eigenvectors,
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A1 A2 A3
Steady-state behaviour

Dynamical Linear Response

B1 B2 B3

FIG. S1: Mass-action extended minimal model. A1-A3) The steady-state input-output relations for auxin, IAA and
ARF in the mass-action extended minimal model as a function of Sauxin (the incoming flux of auxin), with and

without the regulatory feedback (dashed red lines and black thick lines respectively). By construction, the regulated
and unregulated cases have the same input-output relation in the steady state. Parameter values: τauxin=10 min,
τIAA= 333 min, α(no−reg)=0.007 (nM min)−1, α(reg)=0.03 (nM min)−1, β=0.3 (nM min) −1, γ=10 min−1, δ=10 min−1
and ARFT=40 nM. B1-B3) The linear response functions for auxin, IAA and ARF in the unregulated and regulated
cases (black thick lines and dashed red lines and respectively). Parameter values taken as in panel A other than

Sauxin=0.02 nM min−1.

namely λk and |wk〉, where k goes from 1 to the total number of independent molecular species. In this space of
eigenvectors the Jacobian is diagonal and so each eigenvector simply decays with time as exp(λkt).

In general λk can be complex, but for the decay rate of that eigenvector what matters is the real part of λk (by
stability of our system, this value is negative). One then defines the relaxation time of that eigenvector as the inverse
of the opposite of that real part. The higher the rate of relaxation, the shorter the corresponding relaxation time. In
the separation of time-scales approach, one wants to identify the fast parts of the dynamics. Formally, the quasi-
steady state approximation can be obtained by taking to infinity the eigenvalues of the fast eigenvectors. If one does
that, the amplitude of those fast eigenmodes are in effect set to 0, corresponding to enforcing a (quasi-equilibrium)
constraint between the involved molecular species. To interpret the meaning of those fast modes, one can use
Principal Component Analysis. For illustration, consider the two fastest modes of our model which was defined in
Sect. 4. We represent in Supplementary Figure S3, for each species, its components on those two eigenvectors
based on the steady state when Sauxin = 0.02 nM min−1. The separation of time scales is seen to be quite simple:
(1) the fastest mode (x-axis of the figure) consists mainly of auxin-TIR1, IAA and auxin-TIR1-IAA, meaning again
that the association and dissociation rates of the triple complex are high so one has quasi-equilibrium between those
species; (2) the second fastest mode (y-axis of the figure) consists mainly of ARF, IAA and ARF-IAA, meaning that
the association and dissociation rates are high so one has quasi-equilibrium between those species. Were one to
take the on and off rates of these two reactions to infinity, then formally the species ARF-IAA and auxin-TIR1-IAA
could be removed from the dynamics and their dynamical equation replaced by a constraint. (Note that in practice
such a change is not particularly helpful from a numerical point of view.)

In Supplementary Figure S3 the “slow” species occur near the origin, e.g., IAAm and ARF2. The first is easy
to justify: the relaxation time of IAAm is intrinsically long because the lifetime of the messenger RNAs are on the
order of an hour, which is much longer than the time scale of any enzymatic biochemical reaction. The slowness
of ARF2 on the other hand was not necessarily expected. Indeed, since the association and dissociation rates of
the heterodimer ARF-IAA are high, one might have anticipated them to be high also for the ARF homodimer. We
expect that the separation of scales between these dimers reflects the role of ARF-IAA in the sequestration while the
function of ARF2 is associated with ARF’s downstream targets (see last sub-sections).
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A1

IAA-homodimer role

Steady-state behaviour

A2

A3

Dynamical linear response

B1

B2

B3

FIG. S2: Influence of IAA2, the IAA homodimer, in the Vernoux model. A1-A3: the adjustment of decay rates
allows for nearly identical steady-states when comparing the original model (blue dashed curves) and the model

without any homodimer (green thick curves). More precisely we have multiplied both δI and K by a factor 1.3.
B1-B3: Allowing for the formation of IAA2 both slows the response and decreases its amplitude.

FIG. S3: Result of Principal Component Analysis applied on the Jacobian matrix of our new model. For each
molecular species, we represent its coordinate in the space of the two eigenvectors of the Jacobian matrix that have
eigenvalues with the most negative real part. The coordinates for species i are scalar products, respectively 〈i|w1〉

and 〈i|w2〉. The points away from the origin of the plane and thus contributing to the eigenvectors have been labeled
according to the associated molecular species.
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Sauxin (nM/min) δTIAA Regulated (min) δTIAA Unregulated (min) δT ARF Regulated (min) δT ARF Unregulated (min)
0.02 155.7 435.3 153.3 431.6
0.2 68.1 316.2 67.6 315.5

Sauxin (nM/min) δTIAA Regulated (min) δTIAA Unregulated (min) δT ARF Regulated (min) δT ARF Unregulated (min)
0.02 167.8 437.0 168.0 437.0
0.2 72.1 315.9 72.2 315.8

TABLE S1: Resilience in the Vernoux model. Given are the characteristic resilience times δT defined as the times
for responses to decrease from their maximum value to 10% of that value. Both for IAA and for ARF, these times are
significantly shorter with regulation (the IAA negative feedback) than without regulation. This is illustrated here for

the non-linear regime (top) and the linear (bottom) regimes, but the results hardly differ, regulation (presence of the
negative feedback loop on IAA transcription) leading to systematically shorter time scales. For each, the results are
given for Sauxin=0.02 nM min−1 and for Sauxin=0.2 nM min−1. The shorter δT, the greater the system’s resilience to
perturbations. Here the perturbations correspond to instantaneously adding to the system 10 times its steady-state

concentration of auxin.

IAA LOCUS BS ARF1 D(1-2) D(2-3) D(3-4) D(4-5) CLUSTERS
17 AT1G04250 0 0 0 0 0 0
5 AT1G15580 1 0 0 0 0 0
18 AT1G51950 1 0 0 0 0 0
8 AT2G22670 5 127 159 258 453 0
13 AT2G33310 1 0 0 0 0 0
20 AT2G46990 3 566 1324 0 0 0
19 AT3G15540 4 1702 33 11 0 1
2 AT3G23030 1 0 0 0 0 0
1 AT4G14560 2 661 0 0 0 0
28 AT5G25890 2 587 0 0 0 0
14 AT4G14550 1 0 0 0 0 0
9 AT5G65670 1 0 0 0 0 0
12 AT1G04550 0 0 0 0 0 0
31 AT3G17600 3 15 134 0 0 0
16 AT3G04730 0 0 0 0 0 0
30 AT3G62100 2 528 0 0 0 0
11 AT4G28640 1 0 0 0 0 0
29 AT4G32280 5 41 100 1319 268 0
4 AT5G43700 2 2 0 0 0 0
33 AT5G57420 0 0 0 0 0 0
15 AT1G80390 1 0 0 0 0 0

TABLE S2: Results of the consensus sequence scan performed along the 21 IAA-AuxREs chosen for ARF1
binding. The consensus sequence used is TGTCTC. We defined as clusters the groups of motifs whose distance

is compatible with one turn of the DNA helix.
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Toy  Models 
ClearAll"Global`*"
SetOptionsListLinePlot, BaseStyle → FontSize → 20;
SetOptionsPlot, BaseStyle → FontSize → 20;

Toy  model without mass-ac�on law
Here we define the toy model without mass-action law: we define the variables’ list, their derivatives and 

the steady-state variables. We fix the parameters and define the ODEs for the regulated and unregulated 

case.

vt = aux[t], iaa[t], arf[t];
vdt = aux'[t], iaa'[t], arf'[t];
vss = auxss, iaass, arfss;
param =

τaux → 10, τiaa → 333.33, τarf → 2., Sarf → 25, β → 0.003, α0 → 0.05, α1 → 150;
Siaa = 1. /. param;

Siaareg = 1  τiaa iaa[t] (1 - α1 / α0) + α1 / α0;
M = {-1 / τaux, 0, 0}, 0, -1  τiaa, 0, 0, 0, -1  τarf;
b = {Saux}, Siaa - α0 aux[t] * iaa[t], Sarf - β iaa[t] * arf[t];
breg = {Saux}, Siaareg - α1 aux[t] * iaa[t], Sarf - β iaa[t] * arf[t];
rhs = M.vt + b /. param;

rhsss = M.vt + b /. aux[t] → auxss, iaa[t] → iaass, arf[t] → arfss /. param;

rhsreg = M.vt + breg /. param;

rhsssreg = M.vt + breg /. aux[t] → auxss, iaa[t] → iaass, arf[t] → arfss /. param;

eqn = Tablevdt[[n]] ⩵ rhs[[n]][[1]], {n, 1, 3};
eqnreg = Tablevdt[[n]] ⩵ rhsreg[[n]][[1]], {n, 1, 3};

We solve the equations for the steady state as a function of auxin influx.

ss = vss /. Flatten@SolveTablerhsss[[n]][[1]] ⩵ 0., {n, 1, 3}, vss //

FullSimplify // Quiet;

ssreg = vss /. Flatten@SolveTablerhsssreg[[n]][[1]] ⩵ 0., {n, 1, 3}, vss //

FullSimplify // Quiet;



Steady-state plots

ListLinePlotTable[{n, ss[[1]] /. {Saux → n}}, {n, 0, 0.5, 0.1}],

Table[{n, ssreg[[1]] /. {Saux → n}}, {n, 0, 0.5, 0.1}],
Frame → True, FrameLabel → "Sauxin(nM/min)", "auxin(nM)",
PlotRange → {0., 0.5}, All, PlotStyle → Black, Thick, Red, Dashed
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auxiaassplot = ListLinePlotTable[{n, ss[[2]] /. {Saux → n}}, {n, 0., 0.5, 0.001}],

Table[{n, ssreg[[2]] /. {Saux → n}}, {n, 0., 0.5, 0.001}],
Frame → True, FrameLabel → "Sauxin(nM/min)", "Aux/IAA(nM)",
PlotRange → All, All, PlotStyle → Black, Thick, Red, Dashed
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arfssplot = ListLinePlotTable[{n, (ss[[3]]) /. {Saux → n}}, {n, 0., 0.5, 0.01}],

Table[{n, (ssreg[[3]]) /. {Saux → n}}, {n, 0., 0.5, 0.01}],
Frame → True, FrameLabel → "Sauxin(nM/min)", "ARF(nM)",
PlotRange → {0., 0.5}, All, PlotStyle → Black, Thick, Red, Dashed
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Linear Response Analysis

We hereby implement the Linear Response analysis. We first define the jacobian matrices for the unregu-

lated and regulated case respectively and we then plot the components of the Jacobian matrix’s exponen-

tial for ARF, IAA and auxin describing their relaxation with respect to auxin perturbations.

jacobian = TableFlattenTableDrhs[[n]], vt[[m]], {m, 1, 3}, 1, {n, 1, 3} /.

aux[t] → ss[[1]], iaa[t] → ss[[2]], arf[t] → ss[[3]] /. param;

jacobianreg = TableFlattenTableDrhsreg[[n]], vt[[m]], {m, 1, 3}, 1, {n, 1, 3} /.

aux[t] → ssreg[[1]], iaa[t] → ssreg[[2]], arf[t] → ssreg[[3]];

chiarf = MatrixExpjacobian * t[[3, 1]] /.

auxss → ss[[1]], iaass → ss[[2]], arfss → ss[[3]];
chiarfreg = MatrixExpjacobianreg * t[[3, 1]] /.

auxss → ssreg[[1]], iaass → ssreg[[2]], arfss → ssreg[[3]];
chiiaa = MatrixExpjacobian * t[[2, 1]] /.

auxss → ss[[1]], iaass → ss[[2]], arfss → ss[[3]];
chiiaareg = MatrixExpjacobianreg * t[[2, 1]] /.

auxss → ssreg[[1]], iaass → ssreg[[2]], arfss → ssreg[[3]];
chiaux = MatrixExpjacobian * t[[1, 1]] /.

auxss → ss[[1]], iaass → ss[[2]], arfss → ss[[3]];
chiauxreg = MatrixExpjacobianreg * t[[1, 1]] /.

auxss → ssreg[[1]], iaass → ssreg[[2]], arfss → ssreg[[3]];
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Linear-response analysis plots

Plotchiarfreg /. {Saux → 0.02}, chiarf /. {Saux → 0.02},
{t, 0, 100}, PlotRange → All, PlotStyle → Red, Dashed, Black, Thick,
Frame → True, FrameLabel → "t(min)", "χARF(t)",
FrameTicks → Automatic, Automatic, {0, 50, 100}, Automatic, AxesOrigin → {0, 0}
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Plotchiiaareg /. {Saux → 0.02}, chiiaa /. {Saux → 0.02}, {t, 0., 100.},

PlotRange → {0., 100.}, All, PlotStyle → Red, Dashed, Black, Thick,
Frame → True, FrameLabel → "t(min)", "χIAA(t)",
FrameTicks → Automatic, Automatic, {0, 50, 100}, Automatic, AxesOrigin → {0, 0}
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Plotchiiaareg /. {Saux → 0.02}, chiiaa /. {Saux → 0.02}, {t, 0., 1.},

PlotRange → {0., 1.}, All, PlotStyle → Red, Dashed, Black, Thick,
Frame → True, FrameLabel → "t(min)", "χIAA(t)",
FrameTicks → Automatic, Automatic, {0, 0.5, 1}, Automatic, AxesOrigin → {0, 0}
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Plotchiaux /. {Saux → 0.02}, chiauxreg /. {Saux → 0.02}, {t, 0., 100.},

PlotRange → {0., 100.}, All, PlotStyle → Black, Thick, Red, Dashed,
Frame → True, FrameLabel → "t(min)", "χaux(t)", FrameTicks →
{0, 0.5, 1}, Automatic, {0, 50, 100}, Automatic, AxesOrigin → {0, 0}
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Toy  Model with Mass-Ac�on Law
Here we define the toy model with mass-action law: we define the variables’ list, their derivatives and the 

steady-state variables. We fix the parameters and define the ODEs for the regulated and unregulated 

case.
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ClearAll"Global`*"
SetOptionsListLinePlot, BaseStyle → FontSize → 20;
SetOptionsPlot, BaseStyle → FontSize → 20;
vt = aux[t], iaa[t], arf[t], arfiaa[t], auxiaa[t];
vdt = aux'[t], iaa'[t], arf'[t], arfiaa'[t], auxiaa'[t];
vss = auxss, iaass, arfss, arfiaass, auxiaass;

param =

τaux → 10, τiaa → 333.33, δ → 10, γ → 10, β → 0.3, α0 → 0.007, α1 → 0.03, ARFT → 40.;

Siaa = 1. /. param;

Siaareg = 1  τiaa iaa[t] (1 - α1 / α0) + α1 / α0;
M = {-1 / τaux, 0, 0, 0, 0}, 0, -1  τiaa, 0, 0, 0,

{0, 0, 0, 0, 0}, {0, 0, 0, -δ, 0}, {0, 0, 0, 0, -γ};
b = Saux - α0 aux[t] iaa[t] + γ auxiaa[t],

Siaa - α0 aux[t] * iaa[t] - β arf[t] iaa[t] + δ arfiaa[t],
-β iaa[t] * arf[t] + δ arfiaa[t], β arf[t] iaa[t], α0 aux[t] iaa[t];

breg = Saux - α1 aux[t] iaa[t] + γ auxiaa[t],
Siaareg - α1 aux[t] * iaa[t] - β arf[t] iaa[t] + δ arfiaa[t],
-β iaa[t] * arf[t] + δ arfiaa[t], β arf[t] iaa[t], α1 aux[t] iaa[t];

rhs = M.vt + b /. param;

rhsss =

AppendM.vt + b, ARFT - arf[t] - arfiaa[t] ⩵ 0. /. aux[t] → auxss, iaa[t] → iaass,

arf[t] → arfss, auxiaa[t] → auxiaass, arfiaa[t] → arfiaass /. param;

rhsreg = AppendM.vt + breg, ARFT - arf[t] - arfiaa[t] ⩵ 0. /. param;

rhsssreg =

AppendM.vt + breg, ARFT - arf[t] - arfiaa[t] ⩵ 0. /. aux[t] → auxss, iaa[t] → iaass,

arf[t] → arfss, auxiaa[t] → auxiaass, arfiaa[t] → arfiaass /. param;

eqn = AppendTablevdt[[n]] ⩵ rhs[[n]][[1]], {n, 1, 5}, ARFT - arf[t] - arfiaa[t] ⩵ 0.;
eqnreg =

AppendTablevdt[[n]] ⩵ rhsreg[[n]][[1]], {n, 1, 5}, ARFT - arf[t] - arfiaa[t] ⩵ 0.;

We solve the equations for the steady state as a function of auxin influx.

ss = vss /. Flatten@SolveTablerhsss[[n]][[1]] ⩵ 0., {n, 1, 6}, vss //

FullSimplify // Quiet;

ssreg = vss /. Flatten@SolveTablerhsssreg[[n]][[1]] ⩵ 0., {n, 1, 6}, vss //

FullSimplify // Quiet;
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Steady-state plots

ListLinePlotTable[{n, ss[[1]] /. {Saux → n}}, {n, 0., 1, 0.001}],

Table[{n, ssreg[[1]] /. {Saux → n}}, {n, 0., 1, 0.001}],
Frame → True, FrameLabel → "Sauxin(nM/min)", "auxin(nM)",
PlotRange → All, All, PlotStyle → Black, Thick, Red, Dashed
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auxiaassplot = ListLinePlotTable[{n, ss[[2]] /. {Saux → n}}, {n, 0., 1, 0.001}],

Table[{n, ssreg[[2]] /. {Saux → n}}, {n, 0., 1, 0.001}],
Frame → True, FrameLabel → "Sauxin(nM/min)", "Aux/IAA(nM)",
PlotRange → All, All, PlotStyle → Black, Thick, Red, Dashed
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arfssplot = ListLinePlotTable[{n, (ss[[3]]) /. {Saux → n}}, {n, 0., 1, 0.001}],

Table[{n, (ssreg[[3]]) /. {Saux → n}}, {n, 0., 1, 0.001}],
Frame → True, FrameLabel → "Sauxin(nM/min)", "ARF(nM)",
PlotRange → All, PlotStyle → Black, Thick, Red, Dashed
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Linear Response Analysis

We hereby implement the Linear Response analysis. We first define the jacobian matrices for the unregu-

lated and regulated case respectively and we then plot the components of the Jacobian matrix’s exponen-

tial for ARF, IAA and auxin describing their relaxation with respect to auxin perturbations.

jacobian = TableFlattenTableDrhs[[n]], vt[[m]], {m, 1, 5}, 1, {n, 1, 5} /.

aux[t] → ss[[1]], iaa[t] → ss[[2]], arf[t] → ss[[3]],

arfiaa[t] → ss[[4]], auxiaa[t] → ss[[5]];

jacobianreg = TableFlattenTableDrhsreg[[n]], vt[[m]], {m, 1, 5}, 1, {n, 1, 5} /.

aux[t] → ssreg[[1]], iaa[t] → ssreg[[2]], arf[t] → ssreg[[3]],

arfiaa[t] → ssreg[[4]], auxiaa[t] → ssreg[[5]];

chiarf = MatrixExpjacobian * t[[3, 1]] /. auxss → ss[[1]],

iaass → ss[[2]], arfss → ss[[3]], arfiaa[t] → ss[[4]], auxiaa[t] → ss[[5]];
chiarfreg = MatrixExpjacobianreg * t[[3, 1]] /.

auxss → ssreg[[1]], iaass → ssreg[[2]], arfss → ssreg[[3]],

arfiaa[t] → ssreg[[4]], auxiaa[t] → ssreg[[5]];
chiiaa = MatrixExpjacobian * t[[2, 1]] /. auxss → ss[[1]], iaass → ss[[2]],

arfss → ss[[3]], arfiaass → ss[[4]], auxiaass → ss[[5]];
chiiaareg = MatrixExpjacobianreg * t[[2, 1]] /.

auxss → ssreg[[1]], iaass → ssreg[[2]], arfss → ssreg[[3]],

arfiaass → ssreg[[4]], auxiaass → ssreg[[5]];
chiauxreg = MatrixExpjacobianreg * t[[1, 1]] /.

auxss → ssreg[[1]], iaass → ssreg[[2]], arfss → ssreg[[3]],

arfiaa[t] → ssreg[[4]], auxiaa[t] → ssreg[[5]];
chiaux = MatrixExpjacobian * t[[1, 1]] /. auxss → ss[[1]], iaass → ss[[2]],

arfss → ss[[3]], arfiaa[t] → ss[[4]], auxiaa[t] → ss[[5]];
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Linear-response analysis plots

Plotchiarfreg /. {Saux → 0.02} /. param, chiarf /. {Saux → 0.02} /. param,
{t, 0., 1000.}, PlotRange → {0., 1000.}, All,
PlotStyle → Red, Dashed, Black, Thick, Frame → True,

FrameLabel → "t(min)", "χIAA(t)", AxesOrigin → {0, 0}
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Plotchiiaareg /. {Saux → 0.02} /. param, chiiaa /. {Saux → 0.02} /. param,
{t, 0., 1000.}, PlotRange → {0., 1000.}, All,
PlotStyle → Red, Dashed, Black, Thick, Frame → True,

FrameLabel → "t(min)", "χIAA(t)", AxesOrigin → {0, 0}
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PlotChop@chiauxreg /. {Saux → 0.02}, Chop@chiaux /. {Saux → 0.02} /. param,
{t, 0., 50.}, PlotRange → {0., 50.}, All,
PlotStyle → Red, Dashed, Black, Thick, Frame → True,

FrameLabel → "t(min)", "χaux(t)", FrameTicks →
{0, 0.5, 1}, Automatic, {0, 50, 100}, Automatic, AxesOrigin → {0, 0}
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We add here a zoom on auxin behaviour to better visualise the first half minute of relaxation.

chiauxinzoom =

Plotchiauxreg /. {Saux → 0.02}, chiaux /. {Saux → 0.02} /. param, {t, 0., 0.5},

PlotRange → {{0., 0.5}, {0.4, 1}}, PlotStyle → Red, Dashed, Black, Thick,
Frame → True, FrameLabel → "t(min)", "χaux(t)", FrameTicks →
{0, 0.5, 0.75, 1}, Automatic, {0, 0.2, 0.4}, Automatic, AxesOrigin → {0, 0}
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Vernoux Model 
Remove"Global`*"
SetOptionsPlot, BaseStyle → FontSize → 18;
SetOptionsListLinePlot, BaseStyle → FontSize → 18;
SetOptionsListPlot, BaseStyle → FontSize → 18;

System setup 
Parameters

paramreg = piI → 1., dr → 0.007, dA → 0.003, dII → 0.003, dIA → 0.003, kII → 1., kIA → 1.,

bd → 100.0, fA → 10., gammaI → 10., Kaux → 1. , KII → 10, KIA → 10, Ka → 1,

fC → 10, f → 10, wA → 10, wI → 10, wD → 10., dI → 0.05, piA → 1., kAm → 10.,

kprimeIA → 10., kprimeII → 10., τ → 10, dstarIA → 0.003, dstarII → 0.003;
param = piI → 1., dr → 0.007, dA → 0.003, dII → 0.003, dIA → 0.003, kII → 1.,

kIA → 1., bd → 100.0, fA → 10., gammaI → 2.1, Kaux → 1. , KII → 10, KIA → 10,

Ka → 5.5, fC → 10, f → 10, wA → 10, wI → 10, wD → 10., dI → 0.05, piA → 1.,

kAm → 10., kprimeIA → 10., kprimeII → 10., dstarIA → 0.003, dstarII → 0.003,

τ → 10;
wbasal = 0.00005;

w0 = 0.02;

Variables’ definition for time variation, steady state and derivatives 

vt = {IAA[t], IAA2[t], ARF[t], ARFIAA[t], R[t], aux[t]};

vss = {IAA, IAA2, ARF, ARFIAA, R, aux[t]};

vdt = {{IAA'[t]}, {IAA2'[t]}, {ARF'[t]}, {ARFIAA'[t]}, {R'[t]}, {aux'[t]}};

nspecies = Length[vss];

mRNA regulation

h = 1 + f  bd * ARF[t] * 1 + fA  bd * wA * ARF[t]  1 + ARF[t]  bd * 1 + wA  bd * ARF[t] +

wI  kprimeIA  kIA * bd * ARF[t] * IAA[t] + wD  bd * ARFIAA[t] + kAm;
dIx = gammaI * dI * aux[t] * Ka / (1 + Ka * aux[t]);

dIAx = gammaI * dIA * aux[t] * Ka / (1 + Ka * aux[t]);

dIIx = gammaI * dII * aux[t] * Ka / (1 + Ka * aux[t]);

f0 = 2 * dstarII * 5865 /. paramreg;

Steady states expressions for every species



auxss = w * τ;
IAA2ss = kII * IAAss^2  kprimeII + dstarII + dIIx /. {aux[t] → auxss};

ARFIAAss = kIA * IAAss * ARFss  kprimeIA + dstarIA + dIAx /. {aux[t] → auxss};

Rss =

h /. {IAA[t] → IAAss, ARF[t] → ARFss, ARFIAA[t] → ARFIAAss, aux[t] → auxss}  dr;
alphaIA = kIA * dstarIA  kprimeIA + dstarIA + dIAx /. {aux[t] → auxss};

alphaII = kII * dstarII  kprimeII + dstarII + dIIx /. {aux[t] → auxss};

ARFss = piA  dA + alphaIA * IAAss /. {aux[t] → auxss};

Vector of steady states

ss = {IAAss, IAA2ss, ARFss, ARFIAAss, Rss, auxss};

ssconst = {IAAss, IAA2ss, ARFss, ARFIAAss, Rssconst, auxss};

replacess = Tablevt[[n]] → ss[[n]], n, 1, nspecies;

Definition of the unregulated case: we take the rate of transcription at the basal level of auxin

initbasal =

Blockw = wbasal, NSolvepiI * Rss - 2 * alphaII * IAAss^2 - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. paramreg ⩵ 0, IAAss > 0., IAAss;
hnr = Blockw = wbasal, h /. replacess /. paramreg /. initbasal[[1]];
Rssconst = hnr  dr;
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Dynamical equa�ons 

Dynamical equa�ons: regula�on vs non-regula�on

Definition of linear and nonlinear part of the dynamics, both in the regulated and unregulated case

M = -dIx, 2 * kprimeII + dIIx, 0, kprimeIA, piI, 0,
0, -kprimeII + dIIx + dstarII, 0, 0, 0, 0,
0, 0, -dA, kprimeIA + dIAx, 0, 0, 0, 0, 0, -kprimeIA + dIAx + dstarIA, 0, 0,
0, 0, 0, 0, -dr, 0, {0, 0, 0, 0, 0, -1 / τ};

bneg = -2 * kII * IAA[t]^2 - kIA * IAA[t] * ARF[t], kII * IAA[t]^2,
piA - kIA * IAA[t] * ARF[t], kIA * IAA[t] * ARF[t], h, {w};

bnr = -2 * kII * IAA[t]^2 - kIA * IAA[t] * ARF[t], kII * IAA[t]^2,
piA - kIA * IAA[t] * ARF[t], kIA * IAA[t] * ARF[t], hnr, {w};

We hereby define the ‘operative’ values, i.e. including the numerical value of parameters 

Mopn = M /. paramreg;

Mopc = M /. param;

bopneg = bneg /. paramreg;

bopconst = bnr /. param;

RHSneg = Mopn.vt + bopneg;

RHSconst = Mopc.vt + bopconst;

Solu�on with a perturba�on in auxin at t = 0 

Initialization at Sauxin = 0.02 by solving the self-consistent equation for the steady state IAA

initneg = Block{w = w0},

NSolvepiI * Rss - 2 * alphaII * IAAss^2 -

alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. paramreg ⩵ 0, IAAss > 0., IAAss;
initconst = Block{w = w0}, NSolvepiI * Rssconst - 2 * alphaII * IAAss^2 -

alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. param ⩵ 0, IAAss > 0., IAAss;

Initial conditions for regulated and unregulated case: we take as initial conditions the steady states, we 

include a perturbation in auxin at the inital time t=0 (auxin concentration is increased additively by ten 

times its initial value)

tinit = 0.;

vecpert = {0, 0, 0, 0, 0, 10 * w * τ};
icsneg = Tablevti /. t → tinit == Block{w = w0},

ssi + vecperti /. initneg[[1]] /. paramreg, i, nspecies;
icsconst = Tablevti /. t → tinit == Block{w = w0},

ssconsti + vecperti /. initconst[[1]] /. param, i, nspecies;

We hereby compute the solution of the perturbed dynamics 
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eqspertneg = Tablevdti == RHSnegi, i, nspecies;
eqspertconst = Tablevdti == RHSconsti, i, nspecies;
eqssysneg = Joineqspertneg, icsneg;
eqssysconst = Joineqspertconst, icsconst;
Block tinit = 0., tfin = 10000., w = w0,
nsol = NDSolveeqssysneg, vt, t, tinit, tfin;
csol = NDSolveeqssysconst, vt, t, tinit, tfin;;

dt = 0.1;

c = {0.01, 1 / 700, 0.05, 0.01, 0.05, 1};

solpertneg =

TableJoinTablet, Block{w = w0}, ci * ssi /. paramreg /. initneg[[1]],
t, -50, 0, dt, Tablet, Evaluateci * vti /. nsol[[1]],
t, 0.1, 1000, dt, i, nspecies;

solpertconst = TableJoinTablet, Block{w = w0},

ci * ssconsti /. param /. initconst[[1]], t, -50, 0, dt,
Tablet, Evaluateci * vti /. csol[[1]], t, 0.1, 1000, dt, i,
nspecies;

Plots of time courses with regulation

ListPlotsolpertneg, PlotRange → {-30, 80}, All,
Joined → True, PlotLegends → {c[[1]] "IAA", c[[2]] "IAA2 ",

c[[3]] "ARF", c[[4]] "ARFIAA", c[[5]] "mRNA", c[[6]] "aux"}, Frame → True,

FrameLabel → "t(min)", "concentration (nM)", PlotStyle → Thick
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ListPlotsolpertconst, PlotRange → {-30, 80}, All,
Joined → True, PlotLegends → {c[[1]] "IAA", c[[2]] "IAA2 ",

c[[3]] "ARF", c[[4]] "ARFIAA", c[[5]] "mRNA", c[[6]] "aux"}, Frame → True,

FrameLabel → "t(min)", "concentration (nM)", PlotStyle → Thick
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ListPlotsolpertneg[[1]], solpertneg[[3]], solpertneg[[6]],
PlotRange → {-30, 80}, All, Joined → True,

PlotLegends → {c[[1]] "IAA", c[[3]] "ARF", c[[6]] "aux"}, Frame → True,

FrameLabel → "t(min)", "concentration (nM)", PlotStyle → Thick
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Plots of time courses without regulation
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ListPlotsolpertconst[[1]], solpertconst[[3]], solpertconst[[6]],
PlotRange → {-30, 80}, All, Joined → True,

PlotLegends → {c[[1]] "IAA", c[[3]] "ARF", c[[6]] "aux"}, Frame → True,

FrameLabel → "t(min)", "concentration (nM)", PlotStyle → Thick
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Nonlinear Response χnl 

Hereby we quantify the nonlinear response as the change w.r.t. the steady-state value (assumed for t < 

0) caused by the perturbation in auxin.

We define the nonlinear response for the regulated and unregulated case at Saux=0.02

chinlreg = Block{w = w0},

Evaluatevt /. nsol[[1]] - ss /. initneg[[1]]  (10 * w0 * τ) /. paramreg;
chinl = Block{w = w0},

Evaluatevt /. csol[[1]] - ss /. initconst[[1]]  (10 * w0 * τ) /. param;

Plots of comparison of nonlinear responses for regulated and unregulated case

Plotchinlreg[[6]], chinl[[6]], {t, 0, 100},

PlotLegends → "Regulated", "Unregulated", PlotRange → {0, 50}, All, Frame → True,

FrameLabel → "t(min)", "χnlaux(t)", PlotStyle → Blue, Dashed, Red, Thick
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Plotchinlreg[[1]], chinl[[1]], {t, 0, 700}, PlotRange → {0, 700}, All,
PlotLegends → "Regulated", "Unregulated", Frame → True,

FrameLabel → "t(min)", "χnlIAA(t)", PlotStyle → Blue, Dashed, Red, Thick
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Plotchinlreg[[3]], chinl[[3]], {t, 0, 700}, PlotRange → {0, 700}, All,
PlotLegends → "ARF nonlinear response regulated w=0.02", "unregulated",
Frame → True, FrameLabel → "t(min)", "χnlARF(t)",
PlotStyle → Blue, Dashed, Red, Thick
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Resilience �mes for Sauxin=0.02, with and without regula�on

We hereby calculate the resilience time δt as the time for nonlinear responses to decrease from their 

maximum value to 10% of that value.

With regulation
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listchinlreg = TableAbschinlreg, t, 0, 1000, dt;
posmax = Table

Flatten@PositionlistchinlregAll, i, MaxlistchinlregAll, i, i, 3;
listchinlreg01 = TableDroplistchinlregAll, i, posmaxi, 1, i, 3;
pos01max =

TableFlatten@PositionlistchinlregAll, i, Selectlistchinlreg01i,
# < 0.1 * MaxlistchinlregAll, i &, 1[[1]], i, 3;

IAA resilience time with regulation

dtIAAw0n = Tablet, Abschinlreg[[1]], t, 0, 400, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abschinlreg[[1]], t, 0, 400, dt[[posmax[[1, 1]], 1]]

155.7

ARF resilience time with regulation

dtARFw0n = Tablet, Abschinlreg[[3]], t, 0, 400, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abschinlreg[[3]], t, 0, 400, dt[[posmax[[3, 1]], 1]]

153.3

Without regulation

listchinl = TableAbschinl, t, 0, 1000, dt;
posmax =

TableFlatten@PositionlistchinlAll, i, MaxlistchinlAll, i, i, 3;
listchinl01 = TableDroplistchinlAll, i, posmaxi, 1, i, 3;
pos01max = TableFlatten@PositionlistchinlAll, i,

Selectlistchinl01i, # < 0.1 * MaxlistchinlAll, i &, 1[[1]], i, 3;

IAA resilience time without regulation

dtIAAw0c = Tablet, Abschinl[[1]], t, 0, 1000, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abschinl[[1]], t, 0, 1000, dt[[posmax[[1, 1]], 1]]

435.3

ARF resilience time without regulation

dtARFw0c = Tablet, Abschinl[[3]], t, 0, 1000, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abschinl[[3]], t, 0, 1000, dt[[posmax[[3, 1]], 1]]

431.6

Resilience �mes for Sauxin=0.2, with and without regula�on

We consider Sauxin = 0.2

w1 = 0.2;

We compute the corresponding steady states 
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initnegw1 = Block{w = w1},

NSolvepiI * Rss - 2 * alphaII * IAAss^2 -

alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. paramreg ⩵ 0, IAAss > 0., IAAss;
initconstw1 = Block{w = w1}, NSolvepiI * Rssconst - 2 * alphaII * IAAss^2 -

alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. param ⩵ 0, IAAss > 0., IAAss;

We use the steady states as initial conditions, with an additive perturbation in auxin as previously

icsneg = Tablevti /. t → tinit == Block{w = w1},

ssi + vecperti /. initnegw1[[1]] /. paramreg, i, nspecies;
icsconst = Tablevti /. t → tinit == Block{w = w1},

ssconsti + vecperti /. initconstw1[[1]] /. param, i, nspecies;

We solve the system of ODE

eqssysneg = Joineqspertneg, icsneg;
eqssysconst = Joineqspertconst, icsconst;
Block tinit = 0., tfin = 10000., w = w1,
nsolw1 = NDSolveeqssysneg, vt, t, tinit, tfin;
csolw1 = NDSolveeqssysconst, vt, t, tinit, tfin;;

We compute the corresponding resilience times for IAA and ARF following the same steps as for Sauxin= 

0.02, starting from the definition of the nonlinear response

chinlregw1 = Block{w = w1},

Evaluatevt /. nsolw1[[1]] - ss /. initnegw1[[1]]  (10 * w * τ) /. paramreg;
chinlw1 = Block{w = w1},

Evaluatevt /. csolw1[[1]] - ssconst /. initconstw1[[1]]  (10 * w * τ) /. param;

With regulation

listchinlreg = TableAbschinlregw1, t, 0, 400, dt;
posmax = Table

Flatten@PositionlistchinlregAll, i, MaxlistchinlregAll, i, i, 3;
listchinlreg01 = TableDroplistchinlregAll, i, posmaxi, 1, i, 3;
pos01max =

TableFlatten@PositionlistchinlregAll, i, Selectlistchinlreg01i,
# < 0.1 * MaxlistchinlregAll, i &, 1[[1]], i, 3;

IAA resilience time with regulation

dtIAAw1n = Tablet, Abschinlregw1[[1]], t, 0, 400, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abschinlregw1[[1]], t, 0, 400, dt[[posmax[[1, 1]], 1]]

68.1

ARF resilience time with regulation

dtARFw1n = Tablet, Abschinlregw1[[3]], t, 0, 400, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abschinlregw1[[3]], t, 0, 400, dt[[posmax[[3, 1]], 1]]

67.6
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Without regulation

listchinl = TableAbschinlw1, t, 0, 400, dt;
posmax =

TableFlatten@PositionlistchinlAll, i, MaxlistchinlAll, i, i, 3;
listchinl01 = TableDroplistchinlAll, i, posmaxi, 1, i, 3;
pos01max = TableFlatten@PositionlistchinlAll, i,

Selectlistchinl01i, # < 0.1 * MaxlistchinlAll, i &, 1[[1]], i, 3;

IAA resilience time without regulation

dtIAAw1c = Tablet, Abschinlw1[[1]], t, 0, 400, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abschinlw1[[1]], t, 0, 400, dt[[posmax[[1, 1]], 1]]

316.2

ARF resilience time without regulation

dtARFw1c = Tablet, Abschinlw1[[3]], t, 0, 400, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abschinlw1[[3]], t, 0, 400, dt[[posmax[[3, 1]], 1]]

315.6

Plots of nonlinear responses for Sauxin=0.2

Plotchinlregw1[[6]], chinlw1[[6]], {t, 0, 100},

PlotLegends → "Regulated", "Unregulated", PlotRange → {0, 50}, All, Frame → True,

FrameLabel → "t(min)", "χnlaux(t)", PlotStyle → Blue, Dashed, Red, Thick
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Plotchinlregw1[[1]], chinlw1[[1]], {t, 0, 400}, PlotRange → {0, 400}, All,
PlotLegends → "Regulated", "Unregulated", Frame → True,

FrameLabel → "t(min)", "χnlIAA(t)", PlotStyle → Blue, Dashed, Red, Thick
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Plotchinlregw1[[3]], chinlw1[[3]], {t, 0, 400}, PlotRange → {0, 400}, All,
PlotLegends → "Regulated", "Unregulated", Frame → True,

FrameLabel → "t(min)", "χnlARF(t)", PlotStyle → Blue, Dashed, Red, Thick
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Steady state analysis

Defini�on of Vernoux  model without IAA-homodimer

Here we are interested in assessing the effect on the statics and dynamics of the presence of IAA-

homodimers, therefore we remove it. Hereby we define a version of the Vernoux model without IAA-

homodimers 

Parameters

paramnodimer = piI → 1., dr → 0.007, dA → 0.003, dIA → 0.003, kIA → 1.,

bd → 100.0, fA → 10., gammaI → 10., Kaux → 1. , KIA → 10, Ka → 1 * 1.3,

fC → 10, f → 10, wA → 10, wI → 10, wD → 10., dI → 0.05 * 1.3, piA → 1.,

kAm → 10., kprimeIA → 10., auxbasal → 0.11, dstarIA → 0.003, τ → 10;

Time variation

vtnd = {IAA[t], ARF[t], ARFIAA[t], R[t], aux[t]};

Vector of steady states

ssnd = {IAAss, ARFss, ARFIAAss, Rss, auxss};

replacessnd = Tablevtnd[[n]] → ssnd[[n]], n, 1, nspecies - 1;

Linear and nonlinear part of the dynamics and inclusion of parameters 

Mnd = -dIx, 0, kprimeIA, piI, 0, 0, -dA, kprimeIA + dIAx, 0, 0,
0, 0, -kprimeIA + dIAx + dstarIA, 0, 0, 0, 0, 0, -dr, 0, {0, 0, 0, 0, -1 / τ};

bnd = -kIA * IAA[t] * ARF[t] - f0, piA - kIA * IAA[t] * ARF[t],
kIA * IAA[t] * ARF[t], h, {w};

Mopnd = Mnd /. paramnodimer;

bopnd = bnd /. paramnodimer;

RHSnd = Mopnd.vtnd + bopnd;

Jacobian of the dynamics

We hereby linearize the dynamics around the steady state and define the Jacobian matrices for the 

negative feedback case, the unregulated case and the model without IAA-homodimers.

ClearIAAss, IAA2ss, ARFss, ARFIAAss, Rss, auxss, ss, ssnd;
ss = {IAAss, IAA2ss, ARFss, ARFIAAss, Rss, auxss};

ssnd = {IAAss, ARFss, ARFIAAss, Rss, auxss};

replacess = Tablevt[[n]] → ss[[n]], n, 1, nspecies;
replacessnd = Tablevtnd[[n]] → ssnd[[n]], n, 1, nspecies - 1;
RHSssneg = RHSneg /. replacess;

RHSssnd = RHSnd /. replacessnd;

RHSssconst = RHSconst /. replacess;

RHSNDssF[IAAss, IAA2ss, ARFss, ARFIAAss, Rss, auxss] := RHSssneg;

RHSNDssFconst[IAAss, IAA2ss, ARFss, ARFIAAss, Rss, auxss] := RHSssconst;

RHSNDssFnd[IAAss, ARFss, ARFIAAss, Rss, auxss] := RHSssnd;

Hereby the definition of the Jacobian matrices for the negative feedback, the unregulated case and the 
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case without IAA dimers.

Jacobnd =

TableDRHSNDssFnd[IAAss, ARFss, ARFIAAss, Rss, auxss][[m]][[1]], ssnd[[n]],
m, 1, nspecies - 1, n, 1, nspecies - 1;

Jacobneg = TableD[RHSNDssF[IAAss, IAA2ss, ARFss, ARFIAAss, Rss, auxss][[m]][[1]],

ss[[n]]], m, 1, nspecies, n, 1, nspecies;
Jacobconst = TableD[RHSNDssFconst[IAAss, IAA2ss, ARFss, ARFIAAss, Rss, auxss][[m]][[

1]], ss[[n]]], m, 1, nspecies, n, 1, nspecies;

Steady state concentra�ons with varying Sauxin

Hereby we re-introduce the expressions for the steady states

IAA2ss = kII * IAAss^2  kprimeII + dstarII + dIIx /. {aux[t] → auxss};

ARFIAAss = kIA * IAAss * ARFss  kprimeIA + dstarIA + dIAx /. {aux[t] → auxss};

Rss =

h /. {IAA[t] → IAAss, ARF[t] → ARFss, ARFIAA[t] → ARFIAAss, aux[t] → auxss}  dr;
alphaIA = kIA * dstarIA  kprimeIA + dstarIA + dIAx /. {aux[t] → auxss};

alphaII = kII * dstarII  kprimeII + dstarII + dIIx /. {aux[t] → auxss};

ARFss = piA  dA + alphaIA * IAAss /. {aux[t] → auxss};

auxss = w * τ;

We define the range of variation of auxin influx

lwwinit = -10.;

lwwfin = 10.;

lwwstep = 0.1;

wwinit = Explwwinit;
wwfin = Explwwfin;

We initialize the steady states by solving the self-consistent equation for IAAss

initneg =

Blockw = wwinit, NSolvepiI * Rss - 2 * alphaII * IAAss^2 - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. paramreg ⩵ 0, IAAss > 0., IAAss;
initconst = Blockw = wwinit, NSolvepiI * Rssconst - 2 * alphaII * IAAss^2 -

alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. param ⩵ 0, IAAss > 0., IAAss;
initnd = Blockw = wwinit, NSolvepiI * Rss - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIx * IAAss - f0 /. {aux[t] → auxss} /. paramnodimer /.

{IAA2ss → 0} /. paramnodimer ⩵ 0, IAAss > 0., IAAss;

Hereby we define the lists of the steady states for IAA, ARF and auxin for the negative feedback and the 

unregulated case, respectively
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listpneg = {};

listpconst = {};

listpnd = {};

listtarfneg = {};

listtarfconst = {};

listtarfnd = {};

listauxneg = {};

listauxnd = {};

listauxconst = {};

We start varying the auxin influx and find the solution to the self-consistency equation. We use this result 

to recompute all the steady states at each step

Forlww = lwwinit, lww ≤ lwwfin, lww += lwwstep, ww = Explww;
initcondsneg = IAAss /. paramreg /. initneg[[1]];

initcondsconst = IAAss /. param /. initconst[[1]];

initcondsnd = IAAss /. paramnodimer /. initnd[[1]];

newnd = Block{w = ww}, AssumingIAAss > 0.,

FindRootpiI * Rss - alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIx * IAAss - f0 /.

{aux[t] → auxss} /. paramnodimer ⩵ 0, IAAss, initcondsnd;
newneg = Block{w = ww}, AssumingIAAss > 0., FindRoot

piI * Rss - 2 * alphaII * IAAss^2 - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. paramreg ⩵ 0, IAAss, initcondsneg;
newconst = Block{w = ww}, AssumingIAAss > 0., FindRoot

piI * Rssconst - 2 * alphaII * IAAss^2 - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. param ⩵ 0, IAAss, initcondsconst;
listpneg = Appendlistpneg, {ww, IAAss} /. newneg;
listpnd = Appendlistpnd, {ww, IAAss} /. newnd;
listpconst = Appendlistpconst, {ww, IAAss} /. newconst;
listtarfneg = Appendlisttarfneg, {ww, ARFss} /. paramreg /. newneg /. {w → ww};
listtarfnd = Appendlisttarfnd, {ww, ARFss} /. paramnodimer /. newnd /. {w → ww};
listtarfconst = Appendlisttarfconst, {ww, ARFss} /. param /. newconst /. {w → ww};
listauxneg = Appendlistauxneg, {ww, auxss} /. paramreg /. newneg /. {w → ww};
listauxnd = Appendlistauxnd, {ww, auxss} /. paramnodimer /. newnd /. {w → ww};
listauxconst = Appendlistauxconst, {ww, auxss} /. param /. newconst /. {w → ww};
initneg[[1]] = newneg;

initconst[[1]] = newconst;

initnd[[1]] = newnd;



Plots of comparison between the Vernoux models with and without IAA-homodimer

SetOptionsListLinePlot, BaseStyle → FontSize → 18;
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ListLinePlotlistauxneg, listauxnd, PlotRange → {{0, 0.5}, {0, 5}}, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "auxin(nM)",
PlotStyle → Blue, Dashed, Green, Thick,
PlotLegends → "With dimer", "Without dimer"
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ListLinePlotlistpneg1 ;; 125, All, listpnd1 ;; 125, All,
PlotRange → {{0., 0.5}, {0, 250}}, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "IAA(nM)",
PlotStyle → Blue, Dashed, Green, Thick,
PlotLegends → "With dimer", "Without dimer"
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ListLinePlotlisttarfneg1 ;; 125, All, listtarfnd1 ;; 125, All,
PlotRange → {{0, 0.5}, {0, 40}}, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "ARF(nM)",
PlotStyle → Blue, Dashed, Green, Thick,
PlotLegends → "With dimer", "Without dimer"
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Plots of comparison between regulated and unregulated model

plotauxss = ListLinePlotlistauxneg1 ;; 125, All, listauxconst1 ;; 125, All,
PlotRange → {{0, 0.5}, {0, 5}}, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "auxin(nM)",
PlotStyle → Blue, Dashed, Red, Thick,
PlotLegends → "Regulated", "Unregulated"
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plotIAAss = ListLinePlotlistpneg1 ;; 125, All, listpconst1 ;; 125, All,
PlotRange → {0, 0.5}, All, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "IAA(nM)",
PlotStyle → Blue, Dashed, Red, Thick,
PlotLegends → "Regulated", "Unregulated"
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plotARFss =

ListLinePlotlisttarfneg1 ;; 125, All, listtarfconst1 ;; 125, All,
PlotRange → {0, 0.5}, All, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "ARF(nM)",
PlotStyle → Blue, Dashed, Red, Thick,
PlotLegends → "Regulated", "Unregulated"
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Linear Response analysis

We hereby consider Sauxin = 0.02 and compute the corresponding steady states

w0 = 0.02;

initneg =

Block{w = w0}, NSolvepiI * Rss - 2 * alphaII * IAAss^2 - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. paramreg ⩵ 0, IAAss > 0., IAAss;
initconst = Block{w = w0}, NSolvepiI * Rssconst - 2 * alphaII * IAAss^2 -

alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. param ⩵ 0, IAAss > 0., IAAss;
initnd = Block{w = w0}, NSolvepiI * Rss - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIx * IAAss - f0 /.

{aux[t] → auxss, c → 40.} /. paramnodimer ⩵ 0, IAAss > 0., IAAss;

We hereby verify that the eigenvalues of the Jacobian are mostly real and they are all negative (this 

applies to the real part when complex), i.e. the time evolution is given by a decay

J = Jacobneg /. paramreg /. initneg[[1]] /. w → w0;

J1 = Jacobconst /. param /. initconst[[1]] /. w → w0;

Jnd = Jacobnd /. paramnodimer /. initnd[[1]] /. w → w0;

ChopEigenvalues[J]
ChopEigenvaluesJnd
ChopEigenvalues[J1]

{-792.785, -194.832, -0.1,

-0.00675823 + 0.00709818 ⅈ, -0.00675823 - 0.00709818 ⅈ, -0.003}

{-209.964, -0.1, -0.0654 + 0.0244978 ⅈ, -0.0654 - 0.0244978 ⅈ, -0.003}

{-701.383, -170.622, -0.1, -0.007, -0.00539583, -0.003}

To find the linear responses, one takes the exponential of the Jacobian x time

RT = MatrixExp[J * t];

RT1 = MatrixExp[J1 * t];

RTnd = MatrixExpJnd * t;

Plots of comparison of linear responses with and without IAA-homodimer (we plot  the components 

which represent the response, in the linear regime, of aux, IAA, ARF concentrations to a small perturba-

tion in aux)

SetOptionsListLinePlot, BaseStyle → FontSize → 18, FontFamily → Helvetica;
SetOptionsLogLinearPlot, BaseStyle → FontSize → 18;
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PlotRT[[6, 6]], RTnd[[5, 5]], {t, 0, 50}, PlotRange → {0, 50}, All,
PlotStyle → Blue, Dashed, Green, Thick, Frame → True,

FrameLabel -> "t(min)", "χaux(t)", PlotLegends → "With dimer", "Without dimer"
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PlotRT[[1, 6]], ChopRTnd[[1, 5]], {t, 0, 250}, PlotRange → {0, 250}, All,
PlotStyle → Blue, Dashed, Green, Thick, Frame → True,

FrameLabel -> "t(min)", "χIAA(t)", PlotLegends → "With dimer", "Without dimer"
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PlotRT[[3, 6]], ChopRTnd[[2, 5]], {t, 0, 250}, PlotRange → {0, 250}, All,
PlotStyle → Blue, Dashed, Green, Thick, Frame → True,

FrameLabel -> "t(min)", "χARF(t)", PlotLegends → "With dimer", "Without dimer"
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Plots of comparison of linear responses with and without regulation

Plot{RT[[6, 6]], RT1[[6, 6]]}, {t, 0, 50}, PlotRange → {0, 50}, All,
PlotStyle → Blue, Dashed, Red, Thick, Frame → True,

FrameLabel -> "t(min)", "χaux(t)", PlotLegends → "Regulated", "Unregulated"
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Plot{RT[[1, 6]], RT1[[1, 6]]}, {t, 0, 800}, PlotRange → {0, 800}, All,
PlotStyle → Blue, Dashed, Red, Thick, Frame → True,

FrameLabel -> "t(min)", "χIAA(t)", PlotLegends → "Regulated", "Unregulated"

0 200 400 600 800

-15

-10

-5

0

t(min)

χ
IA

A
(t
)

Regulated

Unregulated

Plot{RT[[3, 6]], RT1[[3, 6]]}, {t, 0, 800}, PlotRange → {0, 800}, All,
PlotStyle → Blue, Dashed, Red, Thick, Frame → True,

FrameLabel -> "t(min)", "χARF(t)", PlotLegends → "Regulated", "Unregulated"
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Resilience �mes for Sauxin=0.02, with and without regula�on

We hereby calculate the resilience time δt as the time for the linear responses to decrease from their 

maximum value to 10% of that value

 With regulation

listchireg = TableAbsRTAll, 6, t, 0, 1000, dt;
posmax =

TableFlatten@PositionlistchiregAll, i, MaxlistchiregAll, i, i, 3;
listchireg01 = TableDroplistchiregAll, i, posmaxi, 1, i, 3;
pos01max = TableFlatten@PositionlistchiregAll, i, Select

listchireg01i, # < 0.1 * MaxlistchiregAll, i &, 1[[1]], i, 3;

IAA resilience time with regulation
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dtIAAw0n = Tablet, Abs[RT[[1, 6]]], t, 0, 400, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abs[RT[[1, 6]]], t, 0, 400, dt[[posmax[[1, 1]], 1]]

167.8

ARF resilience time with regulation

dtARFw0n = Tablet, Abs[RT[[3, 6]]], t, 0, 400, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abs[RT[[3, 6]]], t, 0, 400, dt[[posmax[[3, 1]], 1]]

168.

Without regulation

listchi = TableAbsRT1All, 6, t, 0, 1000, dt;
posmax =

TableFlatten@PositionlistchiAll, i, MaxlistchiAll, i, i, 3;
listchi01 = TableDroplistchiAll, i, posmaxi, 1, i, 3;
pos01max = TableFlatten@PositionlistchiAll, i,

Selectlistchi01i, # < 0.1 * MaxlistchiAll, i &, 1[[1]], i, 3;

IAA resilience time without regulation

dtIAAw0c = Tablet, Abs[RT1[[1, 6]]], t, 0, 1000, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abs[RT1[[1, 6]]], t, 0, 1000, dt[[posmax[[1, 1]], 1]]

437.

ARF resilience time without regulation

dtARFw0c = Tablet, Abs[RT1[[3, 6]]], t, 0, 1000, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abs[RT1[[3, 6]]], t, 0, 1000, dt[[posmax[[3, 1]], 1]]

437.

Resilience �mes for Sauxin=0.2, with and without regula�on

We hereby calculate the resilience time δt as the time for the linear responses to decrease from their 

maximum value to 10% of that value

We first estimate the linear responses following the same steps as for Sauxin=0.02

w1 = 0.2;

initnegw1 =

Block{w = w1}, NSolvepiI * Rss - 2 * alphaII * IAAss^2 - alphaIA * IAAss * ARFss -

dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. paramreg ⩵ 0, IAAss > 0., IAAss;
initconstw1 = Block{w = w1}, NSolvepiI * Rssconst - 2 * alphaII * IAAss^2 -

alphaIA * IAAss * ARFss - dIAx * ARFIAAss - dIIx * IAA2ss - dIx * IAAss /.

{aux[t] → auxss} /. param ⩵ 0, IAAss > 0., IAAss;

J = Jacobneg /. paramreg /. initnegw1[[1]] /. w → w1;

J1 = Jacobconst /. param /. initconstw1[[1]] /. w → w1;

RT = MatrixExp[J * t];

RT1 = MatrixExp[J1 * t];
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 With regulation

listchiregw1 = TableAbsRTAll, 6, t, 0, 1000, dt;
posmax = Table

Flatten@Positionlistchiregw1All, i, Maxlistchiregw1All, i, i, 3;
listchireg01w1 = TableDroplistchiregw1All, i, posmaxi, 1, i, 3;
pos01max =

TableFlatten@Positionlistchiregw1All, i, Selectlistchireg01w1i,
# < 0.1 * Maxlistchiregw1All, i &, 1[[1]], i, 3;

IAA resilience time with regulation

dtIAAw1n = Tablet, Abs[RT[[1, 6]]], t, 0, 1000, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abs[RT[[1, 6]]], t, 0, 1000, dt[[posmax[[1, 1]], 1]]

72.1

ARF resilience time with regulation

dtARFw1n = Tablet, Abs[RT[[3, 6]]], t, 0, 1000, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abs[RT[[3, 6]]], t, 0, 1000, dt[[posmax[[3, 1]], 1]]

72.2

Without regulation

listchiw1 = TableAbsRT1All, 6, t, 0, 1000, dt;
posmax =

TableFlatten@Positionlistchiw1All, i, Maxlistchiw1All, i, i, 3;
listchi01w1 = TableDroplistchiw1All, i, posmaxi, 1, i, 3;
pos01max = TableFlatten@Positionlistchiw1All, i,

Selectlistchi01w1i, # < 0.1 * Maxlistchiw1All, i &, 1[[1]], i, 3;

IAA resilience time without regulation

dtIAAw1c = Tablet, Abs[RT1[[1, 6]]], t, 0, 1000, dt[[pos01max[[1, 1]], 1]] -

Tablet, Abs[RT1[[1, 6]]], t, 0, 1000, dt[[posmax[[1, 1]], 1]]

315.9

ARF resilience time without regulation

dtARFw1c = Tablet, Abs[RT1[[3, 6]]], t, 0, 1000, dt[[pos01max[[3, 1]], 1]] -

Tablet, Abs[RT1[[3, 6]]], t, 0, 1000, dt[[posmax[[3, 1]], 1]]

315.8
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Full calibrated model 
ClearAll"Global`*"
SetOptionsPlot, BaseStyle → FontSize → 18;
SetOptionsListPlot, BaseStyle → FontSize → 18;
SetOptionsListLinePlot, BaseStyle → FontSize → 18;

System’s setup
Variables’ definition for time variation, steady state and derivatives

vt = {IAAm[t], IAAp[t], TIR1[t], auxTIR1[t],

auxTIR1IAA[t], IAAstar[t], ARF[t], ARFIAA[t], ARF2[t], aux[t]};

ss = {IAAmss, IAApss, TIR1ss, auxTIR1ss, auxTIR1IAAss,

IAAstarss, ARFSS, ARFIAAss, ARF2ss, auxss};

vdt = {{IAAm'[t]}, {IAAp'[t]}, {TIR1'[t]}, {auxTIR1'[t]}, {auxTIR1IAA'[t]},

{IAAstar'[t]}, {ARF'[t]}, {ARFIAA'[t]}, {ARF2'[t]}, {aux'[t]}};

mRNA regulation functions

F1ssneg =

ARFSS  thetaARF  1 + ARFSS  thetaARF + ARFIAAss  thetaARFIAA + ARF2ss  thetaARF2;
F1neg = ARF[t]  thetaARF 

1 + ARF[t]  thetaARF + ARFIAA[t]  thetaARFIAA + ARF2[t]  thetaARF2;
F1ssconst = 0.0003;

F1const = 0.0003;

Initial conditions

ics = IAAmtinit ⩵ 0., IAAptinit ⩵ 0., TIR1tinit ⩵ 18.51,
auxTIR1tinit ⩵ 0., auxTIR1IAAtinit ⩵ 0., IAAstartinit ⩵ 0.,
ARFtinit ⩵ 10., ARFIAAtinit ⩵ 0., ARF2tinit ⩵ 0., auxtinit ⩵ 0.;

ics2 = IAAmt /; t ≤ tinit ⩵ 0., IAApt /; t ≤ tinit ⩵ 0.,
TIR1t /; t ≤ tinit ⩵ 18.51, auxTIR1t /; t ≤ tinit ⩵ 0.,
auxTIR1IAAt /; t ≤ tinit ⩵ 0., IAAstart /; t ≤ tinit ⩵ 0.,
ARFt /; t ≤ tinit ⩵ 10., ARFIAAt /; t ≤ tinit ⩵ 0.,
ARF2t /; t ≤ tinit ⩵ 0., auxt /; t ≤ tinit ⩵ 0.;

Parameters



param = muIAAm -> 0.003, lm → 0.009, delta → 4, la → 0.575, ld → 0.045, pa → 1.,

pd → 0.072, ka → 0.00082, kd → 0.33, qa → 0.5, qd → 0.44 , muIAAstar → 0.1,

muaux → 0.1, lambda1 → 0.48, thetaARF → 100., thetaARF2 → 100.,

thetaARFIAA → 100., TIR1T → 100, ARFT → 200., muIAA → 0.003;
paramreg = muIAAm -> 0.003, lm → 0.9, delta → 4, la → 5.75, ld → 0.045, pa → 1.,

pd → 0.072, ka → 0.00082, kd → 0.33, qa → 0.5, qd → 0.44 , muIAAstar → 0.1,

muaux → 0.1, lambda1 → 0.48, thetaARF → 100., thetaARF2 → 100.,

thetaARFIAA → 100., TIR1T → 100, ARFT → 200., muIAA → 0.003;

ODEs definition -- linear part and non-linear part

M = {-muIAAm, 0, 0, 0, 0, 0, 0, 0, 0, 0}, delta, -muIAA, 0, 0, ld, 0, 0, pd, 0, 0,
0, 0, 0, kd, 0, 0, 0, 0, 0, 0, 0, 0, 0, -kd, ld + lm, 0, 0, 0, 0, 0,
0, 0, 0, 0, -ld - lm, 0, 0, 0, 0, 0, 0, 0, 0, 0, lm, -muIAAstar, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, pd, 2 qd, 0, 0, 0, 0, 0, 0, 0, 0, -pd, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -qd, 0, 0, 0, 0, kd, 0, 0, 0, 0, 0, -muaux;

bneg = lambda1 * F1neg, -la * IAAp[t] * auxTIR1[t] - pa * IAAp[t] * ARF[t],
-ka * aux[t] * TIR1[t], ka * aux[t] * TIR1[t] - la * auxTIR1[t] * IAAp[t],
la * IAAp[t] * auxTIR1[t], {0}, {-2 * qa * (ARF[t]^2) - pa * ARF[t] * IAAp[t]},

{pa * ARF[t] * IAAp[t]}, {qa * (ARF[t])^2}, Sauxin - ka * aux[t] * TIR1[t];
bconst = lambda1 * F1const, -la * IAAp[t] * auxTIR1[t] - pa * IAAp[t] * ARF[t],

-ka * aux[t] * TIR1[t], ka * aux[t] * TIR1[t] - la * auxTIR1[t] * IAAp[t],
la * IAAp[t] * auxTIR1[t], {0}, {-2 * qa * (ARF[t]^2) - pa * ARF[t] * IAAp[t]},

{pa * ARF[t] * IAAp[t]}, {qa * (ARF[t])^2}, Sauxin - ka * aux[t] * TIR1[t];

Non-linear part with perturbation

bpertconst =

lambda1 * F1const + lambda2 * F2, -la * IAAp[t] * auxTIR1[t] - pa * IAAp[t] * ARF[t],
-ka * aux[t] * TIR1[t], ka * aux[t] * TIR1[t] - la * auxTIR1[t] * IAAp[t],
la * IAAp[t] * auxTIR1[t], {0}, {-2 * qa * (ARF[t]^2) - pa * ARF[t] * IAAp[t]},

{pa * ARF[t] * IAAp[t]}, {qa * (ARF[t])^2}, pert - ka * aux[t] * TIR1[t];
bpertneg = lambda1 * F1neg + lambda2 * F2,

-la * IAAp[t] * auxTIR1[t] - pa * IAAp[t] * ARF[t],
-ka * aux[t] * TIR1[t], ka * aux[t] * TIR1[t] - la * auxTIR1[t] * IAAp[t],
la * IAAp[t] * auxTIR1[t], {0}, {-2 * qa * (ARF[t]^2) - pa * ARF[t] * IAAp[t]},

{pa * ARF[t] * IAAp[t]}, {qa * (ARF[t])^2}, pert - ka * aux[t] * TIR1[t];

Operative definitions of the systems (with parameters’ values inserted)

Mop = M /. param;

bopconst = bconst /. param;

Mopneg = M /. paramreg;

bopneg = bneg /. paramreg;

RHSneg = Mopneg.vt + bopneg;

RHSconst = Mop.vt + bopconst;
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eqsneg = Tablevdti == RHSnegi, i, 10;
eqsconst = Tablevdti == RHSconsti, i, 10;
eqssysneg = Joineqsneg, ics;
eqssysconst = Joineqsconst, ics;

Block tinit = 0., tfin = 10000., Sauxin = 0.02,
nsol = NDSolveeqssysneg, vt, t, tinit, tfin;
csol = NDSolveeqssysconst, vt, t, tinit, tfin;;

Jacobian and steady-state concentra�ons: defini�ons
We hereby define the Jacobian matrices for the negative feedback and the unregulated case.

replacess = Table[vt[[n]] → ss[[n]], {n, 1, 10}];

RHSssneg = RHSneg /. replacess;

RHSssconst = RHSconst /. replacess;

RHSNDssF[IAAmss, IAApss, TIR1ss, auxTIR1ss,

auxTIR1IAAss, IAAstarss, ARFSS, ARFIAAss, ARF2ss, auxss] := RHSssneg;

RHSNDssFconst[IAAmss, IAApss, TIR1ss, auxTIR1ss, auxTIR1IAAss,

IAAstarss, ARFSS, ARFIAAss, ARF2ss, auxss] := RHSssconst;

Jacob =

Table[D[RHSNDssF[IAAmss, IAApss, TIR1ss, auxTIR1ss, auxTIR1IAAss, IAAstarss, ARFSS,

ARFIAAss, ARF2ss, auxss][[m]][[1]], ss[[n]]], {m, 1, 10}, {n, 1, 10}];

Jacobc = Table[D[RHSNDssFconst[IAAmss, IAApss, TIR1ss, auxTIR1ss,

auxTIR1IAAss, IAAstarss, ARFSS, ARFIAAss, ARF2ss, auxss][[

m]][[1]], ss[[n]]], {m, 1, 10}, {n, 1, 10}];

We define the steady-state behaviour for all species.
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P = pa / pd;

Q = qa / qd;

L = la / (ld + lm);

K = ka / kd;

auxTIR1IAAss =
IAApss * K * L * TIR1ss * Sauxin

muaux
;

auxss =
Sauxin

muaux
;

ARFSS = 1 / (4 Q) * (-(1 + P * IAApss) + Sqrt[(1 + P * IAApss)^2 + 8 * Q * ARFT]);

ARF2ss = Q * ARFSS^2;

ARFIAAss = P * ARFSS * IAApss;

TIR1ss = TIR1T / (1 + K * Sauxin * muaux + K * Sauxin * L * IAApss / muaux);

IAAstarss = auxTIR1IAAss * lm / muIAAstar;

auxTIR1ss = K * TIR1ss * auxss;

IAAmssneg = (lambda1 / muIAAm) * F1ssneg;

IAAmssconst = (lambda1 / muIAAm) * F1ssconst;

FMAX = Block[{Sauxin = Exp[8]}, NSolve[

{(((la - ld * L) * K * Sauxin / muaux * IAApss * TIR1ss - lambda1 * delta / muIAAm *

F1ssneg + muIAA * IAApss) /. paramreg) ⩵ 0, IAApss > 0.}, IAApss]];

ARF2ss /. param /. FMAX;

ARFSS /. param /. FMAX[[1]];

We start replacing the steady-state behaviours into the Jacobian matrices.

Jacobneg = Jacob /. {IAAmss → IAAmssneg};

Jacobconst = Jacobc /. {IAAmss → IAAmssconst};

Linear Response Analysis
Hereby we define the value of the amplitude of auxin influx perturbation we are going to apply and 

compute the corresponding steady-state value of IAA.

ϵ = 0.02;

initneg = BlockSauxin = ϵ,
NSolvela - ld * L * K * Sauxin  muaux * IAApss * TIR1ss - lambda1 *

delta  muIAAm * F1ssneg + muIAA * IAApss /. paramreg ⩵ 0,

IAApss > 0., IAApss, WorkingPrecision → 10;
initconst = BlockSauxin = ϵ, NSolve

la - ld * L * K * Sauxin  muaux * IAApss * TIR1ss -

lambda1 * delta  muIAAm * F1ssconst + muIAA * IAApss /. param ⩵ 0,

IAApss > 0., IAApss, WorkingPrecision → 10;

We compute the Jacobian matrices with this steady states for the negative feedback and the unregulated 

case.

J = Jacobneg /. paramreg /. initneg[[1]] /. Sauxin → ϵ;
J1 = Jacobconst /. param /. initconst[[1]] /. Sauxin → ϵ;
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PCA on the Jacobian 

We implement the Principal Component Analysis described into the Supplementary Material to under-

stand whether some species may be clustered according to their relaxation time after auxin perturbation. 

This will consist in computing the eigenvectors of the two Jacobian matrices, i.e., negative feedback and 

unregulated case, and plot the components corresponding to the modes associated to the first two 

highest eigenvalues.

The following list of species is needed only for visualisation.

listspecies = {"IAAm", "IAA", "TIR1", "Aux-TIR1",

"Aux-TIR1-IAA", "IAA*", "ARF", "ARF-IAA", "ARF2", "Aux", "IAA2"};

p = ListPlotTableLabeledEigenvectors[J][[1]][[n]], Eigenvectors[J][[2]][[n]],
listspecies[[n]], {n, 1, 10}, PlotRange → All,

AxesLabel → "<i|w1>", "<i|w2>", PlotMarkers → {"●", 14}, PlotStyle → Red
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p2 =

ListPlotTableLabeledEigenvectors[J1][[1]][[n]], Eigenvectors[J1][[2]][[n]],
listspecies[[n]], {n, 1, 10}, PlotRange → All,

AxesLabel → "<i|w1>", "<i|w2>", PlotMarkers → {"●", 14}, PlotStyle → Red
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Plots of the temporal responses

We compute first the exponential of the jacobian matrices.
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RT = MatrixExp[J * t];

RT1 = MatrixExp[J1 * t];

We plot the components corresponding to the response of IAA, ARF and auxin with respect to variations 

in auxin.

Plot{Chop@RT[[2, 10]], Chop@RT1[[2, 10]]}, {t, 0., 2000},

PlotRange → {All, All}, PlotStyle → {{Red, Dashed}, {Black, Thick}},

PlotLegends → {"Reg", "No Reg"}, Frame → True,

FrameLabel → "t(min)", "\!\(\*SubscriptBox[\(χ\), \(IAA\)]\)(t)"
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PlotChop@RT[[7, 10]], Chop@RT1[[7, 10]], {t, 0., 2000},

PlotRange → {0., 2000}, All, PlotStyle → Red, Dashed, Black, Thick,
PlotLegends → {"Reg", "No Reg"}, Frame → True,

FrameLabel → "t(min)", "\!\(\*SubscriptBox[\(χ\), \(ARF\)]\)(t)"
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Plot{RT[[10, 10]], RT1[[10, 10]]}, {t, 0., 2000}, PlotRange → {0., 2000}, All,
PlotStyle → Red, Dashed, Black, Thick, PlotLegends → {"Reg", "No Reg"},

Frame → True, FrameLabel → "t(min)", "\!\(\*SubscriptBox[\(χ\), \(Aux\)]\)(t)"
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Toggle-switch  implementa�on
Hereby we define the step-size perturbation for the auxin influx and we implement the equations for the 

auxin network with this perturbation.

omega0 = 0.02;

alpha = 0.2;

alpha0 = alpha;

pert2t_, tc_, ti_, tm_ :=

Ifti <= t <= tc, omega0 + alpha, omega0;

Plotpert2[t, 50., 0., 200.], {t, -100., 500.}, Frame → True,

FrameLabel → "t (min)", "Sauxin (nM/min)", PlotStyle → Black, Thick
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We compute first the steady-state values of the species in the auxin network for the basal rate of auxin 

influx, i.e., before adding the step-size perturbation.

tinit = -100;

tfin = 120000;

Mop = M /. param;

Mopneg = M /. paramreg;

bopneg = bneg /. paramreg /. Sauxin → omega0;
bopconst = bconst /. param /. Sauxin → omega0;

RHSneg = Mopneg.vt + bopneg;

RHSconst = Mop.vt + bopconst;

eqneg = Tablevdti == RHSnegi, i, 10;
eqconst = Tablevdti == RHSconsti, i, 10;

eqssysSSneg = Joineqneg, ics;
eqssysSSconst = Joineqconst, ics2;
SSneg = NDSolveeqssysSSneg, vt, t, tinit, tfin;
SSconst = NDSolveeqssysSSconst, vt, t, tinit, tfin;

(*initial condition for the negative feedback*)

icsneglist = TableEvaluatevti /. SSneg[[1]] /. t → tfin, i, 1, 10;
icsconstlist = TableEvaluatevti /. SSconst[[1]] /. t → tfin, i, 1, 10;
icsneg = Table

vti ⩵ TableEvaluatevti /. SSneg[[1]] /. t → tfin, i, 1, 10i,
i, 1, 10 /. t → tinit;

(*initial condition for no regulation*)

icsconst =

Tablevti ⩵ TableEvaluatevti /. SSconst[[1]] /. t → tfin, i, 1, 10
i, i, 1, 10 /. t → tinit;
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pert = pert2t, tc, ti, tm;
Mopn = M /. paramreg;

Mopc = M /. param;

bopneg = bneg /. paramreg /. Sauxin → omega0;
bopconst = bconst /. param /. Sauxin → omega0;

bpertnegop = bpertneg /. paramreg /. Sauxin → omega0;
bpertconstop = bpertconst /. param /. Sauxin → omega0;

RHSneg = Mopn.vt + bopneg;

RHSconst = Mopc.vt + bopconst;

RHSpertneg = Mopn.vt + bpertnegop;

RHSpertconst = Mopc.vt + bpertconstop;

eqspertneg = Tablevdti == RHSpertnegi, i, 10;
eqspertconst = Tablevdti == RHSpertconsti, i, 10;

eqssysneg = Joineqspertneg, icsneg;
eqssysconst = Joineqspertconst, icsconst;

Here we implement the toggle switch by definying the parameters and the steady-state equations and 

their solution.

α1 = 0.5;

α2 = 0.5;

β = 4.;

γ = 4.;

θarf = 4.5;

tarf = 2;

δu = 0.1;

δv = 0.1;

toggleswitchsolneg = {ssu, ssv} /. NSolve
0. ⩵ tarf icsneglist[[7]]  θarf + icsneglist[[7]] + α1 / (1. + ssv^β) - δu ssu,
0. ⩵ α2 / (1. + ssu^γ) - δv ssv, {ssu, ssv}, Reals;

toggleswitchsolconst = {ssu, ssv} /. NSolve
0. ⩵ tarf icsconstlist[[7]]  θarf + icsconstlist[[7]] + α1 / (1. + ssv^β) - δu ssu,
0. ⩵ α2 / (1. + ssu^γ) - δv ssv, {ssu, ssv}, Reals;

We define hereby the dynamical equations for the toggle switch and set the steady-state values as initial 

conditions for the integration with a step-size perturbation.

toggleswitch = u'[t] ⩵ tarf ARF[t]  θarf + ARF[t] + α1 / (1. + v[t]^β) - δu u[t],
v'[t] ⩵ α2 / (1. + u[t]^γ) - δv v[t];

icstoggleneg = utinit ⩵ toggleswitchsolneg[[2, 1]],

vtinit ⩵ toggleswitchsolneg[[2, 2]];
icstoggleconst = utinit ⩵ toggleswitchsolconst[[2, 1]],

vtinit ⩵ Chop@toggleswitchsolconst[[2, 2]];

We prepare the final big system of ODEs by merging together the equations of the auxin network and 
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the toggle switch along with all initial conditions.

eqssysneg = Joineqspertneg, toggleswitch, icsneg, icstoggleneg;
eqssysconst = Joineqspertconst, toggleswitch, icsconst, icstoggleconst;

We integrate the equations for the negative feedback and the case without regulation.

tfin = 300;

tc = 50;

ti = 0;

tm = 200;

nsol =

NDSolveeqssysneg, Join[vt, {u[t], v[t]}], t, tinit, tfin, MaxStepSize → 0.01;
csol = NDSolveeqssysconst, Join[vt, {u[t], v[t]}], t, tinit, tfin;

Toggle-switch  plots

PlotEvaluate[u[t]] /. nsol, Evaluate[u[t]] /. csol, t, tinit, 200,
PlotRange → All, Frame → True, FrameLabel → "t(min)", "Gene I",
PlotStyle → Dashed, Darker[Green, 0.2], Thick, Darker[Green, 0.5],
AxesOrigin → {-100, 0}
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PlotEvaluate[v[t]] /. nsol, Evaluate[v[t]] /. csol, t, tinit, 200,
PlotRange → All, Frame → True, FrameLabel → "t(min)", "Gene II",
PlotStyle → Dashed, Red, Thick, Orange, AxesOrigin → {-100, 0}
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Stress gene response
We define the parameters for the stress-gene response.

α = 1;

β = 15;

δ = 0.005 / 4;

We define the new perturbation we shall apply to the system.

Clear[omega]
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omega0 = 0.02;

omega = omega0;

alpha0 = 2;

tc0 = 100;

pert2t_, alpha_, omega_, tc_ :=

If0 ≤ t ≤ tc, alpha * omega, omega;

Plotpert2t, alpha0, omega0, tc0, {t, -10., 2000.},

Frame → True, FrameLabel → "t (min)", "Sauxin (nM/min)",
PlotStyle → Black, Thick, PlotRange → All

0 500 1000 1500 2000

0.020

0.025

0.030

0.035

0.040

t (min)

S
a
u
x
in
(n

M
/m

in
)

Hereby we compute the initial conditions as the steady-state values of the species for the basal auxin 

influx before applying the perturbation.

tinit = -5.;

tfin = 120000;

Mop = M /. param;

Mopneg = M /. paramreg;

bopneg = bneg /. paramreg /. Sauxin → omega0;
RHSneg = Mopneg.vt + bopneg;

eqneg = Tablevdti == RHSnegi, i, 10;
eqssysSSneg = Joineqneg, ics;
SSneg = NDSolveeqssysSSneg, vt, t, tinit, tfin;
icsneglist = TableEvaluatevti /. SSneg[[1]] /. t → tfin, i, 1, 10;
icsneg = Table

vti ⩵ TableEvaluatevti /. SSneg[[1]] /. t → tfin, i, 1, 10i,
i, 1, 10 /. t → tinit;

We redefine the perturbed system and prepare it for the final integration.
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Clearbpertnegop, bpertneg
pert = pert2t, alpha0, omega0, tc0;
bpertconst =

lambda1 * F1const + lambda2 * F2, -la * IAAp[t] * auxTIR1[t] - pa * IAAp[t] * ARF[t],
-ka * aux[t] * TIR1[t], ka * aux[t] * TIR1[t] - la * auxTIR1[t] * IAAp[t],
la * IAAp[t] * auxTIR1[t], {0}, {-2 * qa * (ARF[t]^2) - pa * ARF[t] * IAAp[t]},

{pa * ARF[t] * IAAp[t]}, {qa * (ARF[t])^2}, pert - ka * aux[t] * TIR1[t];
bpertneg = lambda1 * F1neg + lambda2 * F2,

-la * IAAp[t] * auxTIR1[t] - pa * IAAp[t] * ARF[t],
-ka * aux[t] * TIR1[t], ka * aux[t] * TIR1[t] - la * auxTIR1[t] * IAAp[t],
la * IAAp[t] * auxTIR1[t], {0}, {-2 * qa * (ARF[t]^2) - pa * ARF[t] * IAAp[t]},

{pa * ARF[t] * IAAp[t]}, {qa * (ARF[t])^2}, pert - ka * aux[t] * TIR1[t];

Mopn = M /. paramreg;

Mopc = M /. param;

bopneg = bneg /. paramreg;

bpertnegop = bpertneg /. paramreg;

RHSneg = Mopn.vt + bopneg;

RHSpertneg = Mopn.vt + bpertnegop;

eqspertneg = Tablevdti == RHSpertnegi, i, 10;
eqssysneg = Joineqspertneg, icsneg;

We solve the steady-state equations for the stress gene response and initial conditions for basal auxin 

influx before applying the perturbation. We merge these initial conditions and the dynamical equations 

with the entire system.

stressgenesol1 =

e1 /. NSolve0. ⩵ α icsneglist[[7]]  β + icsneglist[[7]] - δ e1, e1, Reals;
stressgenesol2 = e2 /. NSolve

0. ⩵ α icsneglist[[9]]  β^2 + icsneglist[[9]] - δ e2, e2, Reals;
stressgene = {e1'[t] ⩵ α (ARF[t] / (β + ARF[t])) - δ e1[t],

e2'[t] ⩵ α (ARF2[t] / (β^2 + ARF2[t])) - δ e2[t]};
icsstressgeneneg = e1tinit ⩵ stressgenesol1[[1]],

e2tinit ⩵ stressgenesol2[[1]];
eqssysneg = Joineqspertneg, stressgene, icsneg, icsstressgeneneg;

We solve the final system.

tfin = 2000;

nsol = NDSolveeqssysneg, Join[vt, {e1[t], e2[t]}], t, tinit, tfin;
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Stress-gene response’s plots

e1neg1 = ListLinePlot
Tablet1, Evaluate[e1[t]] /. nsol /. {t → t1}[[1]], t1, -5, tfin, 1,
PlotRange → -5, tfin, All, PlotStyle → Thick, Red
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e2neg1 = ListLinePlot
Tablet1, Evaluate[e2[t]] /. nsol /. {t → t1}[[1]], t1, -5, tfin, 1,
PlotRange → -5, tfin, All, PlotStyle → Thick, Red
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Steady State proper�es with varying omega
Hereby we define the lists of the steady states for IAA, ARF and auxin for the negative feedback and the 

unregulated case, respectively.

listpneg = {};

listtarfneg = {};

listaneg = {};

listpconst = {};

listaconst = {};

listtarfconst = {};

We define the range of variation of auxin influx.
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lwwinit = -10.;

lwwfin = Log[0.5];

lwwstep = 0.1;

wwinit = Exp[lwwinit];

wwfin = Exp[lwwfin];

We initialise the steady states.

P = pa  pd;
Q = qa  qd;
L = la  ld + lm;
K = ka  kd;

auxTIR1IAAss =
IAApss * K * L * TIR1ss * Sauxin

muaux
;

auxss =
Sauxin

muaux
;

ARFSS = 1 / (4 Q) * (-(1 + P * IAApss) + Sqrt[(1 + P * IAApss)^2 + 8 * Q * ARFT]);

ARF2ss = Q * ARFSS^2;

ARFIAAss = P * ARFSS * IAApss;

TIR1ss = TIR1T  1 + K * Sauxin  muaux + K * Sauxin * L * IAApss / muaux;
IAAstarss = auxTIR1IAAss * lm  muIAAstar;
auxTIR1ss = K * TIR1ss * auxss;

IAA2ss = H * IAApss^2.;

IAAmssneg = lambda1  muIAAm * F1ssneg;

IAAmssconst = lambda1  muIAAm * F1ssconst;

initneg =

BlockSauxin = wwinit, NSolvela - ld * L * K * Sauxin  muaux * IAApss * TIR1ss -

lambda1 * delta  muIAAm * F1ssneg + muIAA * IAApss /.

paramreg ⩵ 0, IAApss > 0., IAApss // Quiet;

initconst = BlockSauxin = wwinit, NSolve
la - ld * L * K * Sauxin  muaux * IAApss * TIR1ss - lambda1 * delta  muIAAm *

F1ssconst + muIAA * IAApss /. param ⩵ 0, IAApss > 0., IAApss // Quiet;

We start varying the auxin influx and find the solution to the self-consistency equation. We use this result 

to recompute all the steady states at each step.
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Forlww = lwwinit, lww ≤ lwwfin, lww += lwwstep,

ww = Explww;
initcondsneg = IAApss /. paramreg /. initneg[[1]];

initcondsconst = IAApss /. param /. initconst[[1]];

newneg = BlockSauxin = ww, AssumingIAApss > 0., FindRoot
la - ld * L * K * Sauxin  muaux * IAApss * TIR1ss - lambda1 * delta  muIAAm *

F1ssneg + muIAA * IAApss /. paramreg ⩵ 0, IAApss, initcondsneg;
newconst = BlockSauxin = ww, AssumingIAApss > 0., FindRoot

la - ld * L * K * Sauxin  muaux * IAApss * TIR1ss - lambda1 * delta  muIAAm *

F1ssconst + muIAA * IAApss /. param ⩵ 0, IAApss, initcondsconst;

listpneg = Appendlistpneg, {ww, IAApss} /. newneg;
listtarfneg =

Appendlisttarfneg, {ww, ARFSS} /. paramreg /. newneg /. Sauxin → ww;
listaneg = Appendlistaneg, {ww, auxss} /. paramreg /. newneg /. Sauxin → ww;
listpconst = Appendlistpconst, {ww, IAApss} /. newconst;
listaconst = Appendlistaconst, {ww, auxss} /. param /. newconst /. Sauxin → ww;
listtarfconst =

Appendlisttarfconst, {ww, ARFSS} /. param /. newconst /. Sauxin → ww;
initneg[[1]] = newneg;

initconst[[1]] = newconst;

 // Quiet

iaaplotnew = ListLinePlotlistpnegAll, All, listpconstAll, All,
PlotRange → All, {0, 150}, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "Aux/IAA(nM)",
PlotStyle → Red, Dashed, Black, Thick, AxesOrigin → {0, 0}
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arfplotnew = ListLinePlotlisttarfnegAll, All, listtarfconstAll, All,
PlotRange → {0, 0.5}, All, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "ARF(nM)",
PlotStyle → Red, Dashed, Black, Thick
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auxplotnew = ListLinePlotlistanegAll, All, listaconstAll, All,
PlotRange → {0, 0.5}, All, Frame → True,

FrameLabel → "\!\(\*SubscriptBox[\(S\), \(auxin\)]\)(nM/min)", "auxin(nM)",
PlotStyle → Black, Thick, Red, Dashed
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Self-consistency equa�ons and plot
Here we define the steady-state concentrations for the species we need to plot the self-consistency 

equation. We then define the two sides of the equations and finally plot them for different values of auxin 

influx.

ARFSS = 1 / (4 Q) * (-(1 + P * IAApss) + Sqrt[(1 + P * IAApss)^2 + 8 * Q * ARFT]);

ARF2ss = Q * ARFSS^2;

ARFIAAss = P * ARFSS * IAApss;

FullCalibratedModel.nb     17



ARF[x_] := -1 + pa  pd x + Sqrt1 + pa  pd x^2 + 8 qa  qd ARFT  4 qa  qd;
ARFIAA[x_] := pa  pd ARF[x] x;
ARF2[x_] := qa  qd ARF[x]^2;
fleft[x_] := delta  muIAAm lambda1 ARF[x]  thetaARF 

1 + ARF[x]  thetaARF + ARFIAA[x]  thetaARFIAA + ARF2[x]  thetaARF2 - muIAA x;

fright[x_] := la - ld * L ka  kd Sauxin  muaux x
TIR1T  1 + ka  kd Sauxin  muaux + la  ld + lm ka  kd Sauxin  muaux x;

fright100 = Plotfright[x] /. paramreg /. Sauxin → 0.001,
{x, 0, 100}, PlotStyle → Gray, Dashed, PlotRange → All;

fright10 = Plotfright[x] /. paramreg /. Sauxin → 0.01, {x, 0, 100},

PlotStyle → Gray, Lighter, Thickness[0.008], PlotRange → All;
fright1 = Plotfright[x] /. paramreg /. Sauxin → 0.1, {x, 0, 100},

PlotStyle → Black, Dotted, Thickness[0.005], PlotRange → All;

fleftgeneral =

Plotfleft[x] /. paramreg, {x, 0, 100}, PlotStyle → Orange, Thickness[0.008],
PlotRange → All, {0, 20}, Frame → True, FrameLabel → {"IAA", ""};

Showfleftgeneral, fright100, fright10, fright1
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