The Royal Society
Browse

Supplementary material from "Why are mayflies (Ephemeroptera) lost following small increases in salinity? Three conceptual osmophysiological hypotheses"

Version 2 2018-10-31, 15:25
Version 1 2018-10-17, 13:47
Posted on 2018-10-31 - 15:25
The salinity of many freshwaters is increasing globally as a result of human activities. Associated with this increase in salinity are losses of Ephemeroptera (mayfly) abundance and richness. The salinity concentrations at which Ephemeroptera decline in nature are lower than their internal salinity or haemolymph osmolality. Many species also suffer substantial mortality in single species laboratory toxicity tests at salinities lower than their internal salinity. These findings are problematic as conventional osmoregulation theory suggests that freshwater animals should not experience stress where external osmolality is greater than haemolymph osmolality. Here I explore three hypotheses to explain salt sensitivity in Ephemeroptera. These conceptual hypotheses are based on the observations that as the external sodium ion (Na+) concentration increases so does the Na+ turnover rate (both uptake and elimination rates increase). Sulphate (SO42-) uptake in mayflies also increases with increasing external SO42- although, unlike Na+, its rate of increase decreases with increasing external SO42-. The first hypothesis is premised on ion turnover being energetically costly. The first hypothesis proposes that individuals must devote a greater proportion of their energy to ion homeostasis at the expense of other uses including growth and development. Lethal levels of salinity presumably result from individuals not being able to devote enough energy to maintain ion homeostasis without critical loss of other vital functions. The second hypothesis is premised on the uptake of Na+ exchanged for (an outgoing) H+, leading to (localized) loss of pH regulation. The third hypothesis is premised on localized Na+ toxicity or poisoning with increased Na turnover as salinity increases. None of the proposed hypotheses is without potential problems, yet all are testable, and research effort should be focused at attempting to falsify them.This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?