The Royal Society
Browse

Supplementary material from "Three-dimensional functional gradients direct stem curling in the resurrection plant Selaginella lepidophylla"

Posted on 2019-10-17 - 13:42
Upon hydration and dehydration, the vegetative tissue of Selaginella lepidophylla can reversibly swell and shrink to generate complex morphological transformations. Here, we investigate how structural and compositional properties at tissue and cell wall levels in S. lepidophylla lead to different stem curling profiles between inner and outer stems. Our results show that directional bending in both stem types is associated with cross-sectional gradients of tissue density, cell orientation and secondary cell wall composition between adaxial and abaxial stem sides. In inner stems, longitudinal gradients of cell wall thickness and composition affect tip-to-base tissue swelling and shrinking, allowing for more complex curling as compared to outer stems. Together, these features yield three-dimensional functional gradients that allow the plant to reproducibly deform in predetermined patterns that vary depending on the stem type. This study is the first to demonstrate functional gradients at different hierarchical levels combining to operate in a three-dimensional context.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?