The Royal Society
Browse

Supplementary material from "The relationship between house height and mosquito house entry: an experimental study in rural Gambia"

Posted on 2021-05-19 - 03:14
Most malaria infections in sub-Saharan Africa are acquired indoors, thus finding effective ways of preventing mosquito house entry should reduce transmission. Since most malaria mosquitoes fly less than 1 m from the ground, we tested whether raising buildings off the ground would prevent the entry of Anopheles gambiae, the principal African malaria vector, in the rural Gambia. Nightly collections of mosquitoes were made using light traps from four inhabited experimental huts, each of which could be moved up or down. Mosquito house entry declined with increasing height, with a hut at 3 m, reducing An. gambiae house entry by 84% when compared with huts on the ground. A propensity for malaria vectors to fly close to the ground and reduced levels of carbon dioxide, a major mosquito attractant, in elevated huts, may explain our findings. Raised buildings may help reduce malaria transmission in Africa.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Journal of the Royal Society Interface

AUTHORS (12)

Majo Carrasco-Tenezaca
Musa Jawara
Mahamed Y. Abdi
John Bradley
Otis Sloan Brittain
Sainey Ceesay
Umberto D'Alessandro
David Jeffries
Margaret Pinder
Hannah Wood
Jakob B. Knudsen
Steve W. Lindsay
need help?