The Royal Society
Browse

Supplementary material from "The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation"

Version 2 2019-08-22, 10:29
Version 1 2019-08-10, 12:12
Posted on 2019-08-22 - 10:29
The early Palaeozoic Era records the initial biodiversification of the Phanerozoic. The increase in biodiversity involved drastic changes in taxon longevity, and in rates of origination and extinction. Here, we calculate these variables in unprecedented temporal resolution. We find that highly volatile origination and extinction rates are associated with short genus longevities during the Cambrian Period. During the Ordovician and Silurian periods, evolutionary rates were less volatile and genera persisted for increasingly longer intervals. The 90%-genus life expectancy doubled from 5 Myr in the late Cambrian to more than 10 Myr in the Ordovician–Silurian periods. Intervals with widespread ecosystem disruption are associated with short genus longevities during the Cambrian and with exceptionally high longevities during the Ordovician and Silurian periods. The post-Cambrian increase in persistence of genera, therefore, indicates an elevated ability of the changing early Palaeozoic marine ecosystems to sustainably maintain existing genera. This is evidence of a new level of ecosystem resilience which evolved during the Ordovician Period.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?