The Royal Society
Browse

Supplementary material from "Terrestrial habitats decouple the relationship between species and subspecies diversification in mammals"

Version 2 2020-03-11, 10:15
Version 1 2020-03-04, 17:01
Posted on 2020-03-11 - 10:15
Darwin proposed that lineages with higher diversification rates should evidence this capacity at both the species and subspecies level. This should be the case if subspecific boundaries are evolutionary faultlines along which speciation is generally more likely to occur. This pattern has been described for birds, but remains poorly understood in mammals. To investigate the relationship between species richness (SR) and subspecies richness (SSR), we calculated the strength of the correlation between the two across all mammals. Mammalian taxonomic richness correlates positively, but only very weakly, between the species and subspecies level, deviating from the pattern found in birds. However, when mammals are separated by environmental substrate, the relationship between generic SR and average SSR in non-terrestrial taxa is stronger than that reported for birds (Kendall's tau = 0.31, p < 0.001). By contrast, the correlation in terrestrial taxa alone weakens compared to that for all mammals (Kendall's tau = 0.11, p < 0.001). A significant interaction between environmental substrate and SR in phylogenetic regressions confirms a role for terrestrial habitats in disrupting otherwise linked dynamics of diversification across the taxonomic hierarchy. Further, models including species range size as a predictor show that range size affects SSR more in terrestrial taxa. Taken together, these results suggest that the dynamics of diversification of terrestrial mammals are more affected by physical barriers or ecological heterogeneity within ranges than those of non-terrestrial mammals, at two evolutionary levels. We discuss the implication of these results for the equivalence of avian and mammalian subspecies, their potential role in speciation and the broader question of the relationship between microevolution and macroevolution.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?