The Royal Society
Browse

Supplementary material from "Substantially adaptive potential in polyploid cyprinid fishes: evidence from biogeographic, phylogenetic and genomic studies"

Posted on 2020-01-24 - 17:01
Whole genome duplication (WGD) is commonly believed to play key roles in vertebrate evolution. However, nowadays polyploidy exists in a few fish, amphibian and reptile groups only, and seems to be an evolutionary dead-end in vertebrates. We investigate the evolutionary significance of polyploidization in Cyprinidae—a fish family that contains more polyploid species than any other vertebrate groups with integrating biogeographic, phylogenetic and genomic analyses. First, polyploid species are found to be significantly frequent in higher altitude and lower mean annual temperature areas compared to diploid species in Cyprinidae. Second, a polyploidy-related diversification rate shift is observed in Cyprinidae. It is that increased net diversification rate is only seen in three polyploid lineages, and other polyploid lineages have similar net diversification rate as well as diploid lineages in Cyprinidae. Interestingly, significant ‘lag-times’ existed between polyploidization and radiation in Cyprinidae. Multiple polyploid lineages were established approximately 15 Ma through recurrent allopolyploidization events but the net diversification rate did not start to increase until approximately 5 Ma—long after polyploidization events. Environmental changes associated with the continuous uplift of Tibetan Plateau and climate change have likely promoted the initial establishment and subsequent radiation of polyploidy in Cyprinidae. Finally, the unique retention of duplicated genes in polyploid cyprinids adapted to harsh environments is found. Taken together, our results suggest that polyploidy in Cyprinidae is far more than an evolutionary dead-end, but rather shows substantially adaptive potential. Polyploid cyprinids thus constitute an ideal model system for unveiling largely unexplored consequences of WGD in vertebrates, from genomic evolution to species diversification.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?