The Royal Society
Browse

Supplementary material from "Polyethylene glycol grafted with carboxylated graphene oxide as a novel interface modifier for polylactic acid/graphene nanocomposites"

Version 2 2020-07-16, 07:22
Version 1 2020-07-08, 17:47
Posted on 2020-07-16 - 07:22
Strength and toughness are both of great importance for the application of polylactic acid (PLA). Unfortunately, these two properties are often contradictory. In this work, an effective and practical strategy is proposed by using carboxylated graphene oxide (GC) grafted with polyethylene glycol (PEG), i.e. GC-g-PEG. The synthesis procedure of GC-g-PEG is firstly optimized. Then, a series of PLA nanocomposites were prepared by the melt blending method via masterbatch. In comparison to that achieved over pure PLA, these nanocomposites are of higher crystallinity, thermal stability and mechanical strength. This is mainly attributed to well-tailored interface and good dispersion. Especially, while retaining the tensile strength of the original PLA, the elongation at break increases by seven times by adding 0.3 wt% GC-g-PEG.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?