The Royal Society
Browse

Supplementary material from "Orthoester formation in fungal meroterpenoid austalide F biosynthesis"

Posted on 2022-11-24 - 09:58
Fungal meroterpenoids are important bioactive natural products. Their biosynthetic machineries are highly diverse, and reconstitutions lead to the production of unnatural meroterpenoids. In this study, heterologous gene expression in Aspergillus oryzae and in vitro assays elucidated the biosynthetic pathway of the orthoester-containing fungal meroterpenoid austalide F. Remarkably, the α-ketoglutarate-dependent oxygenase AstB produces the hemiacetal intermediate, and the methyltransferase AstL transfers a methyl group on it to construct the orthoester functionality. This study presents the extraordinary orthoester biosynthetic machinery and provides valuable insights into the creation of unnatural novel bioactive meroterpenoids through engineered biosynthesis.This article is part of the theme issue ‘Reactivity and mechanism in chemical and synthetic biology’.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Philosophical Transactions of the Royal Society B: Biological Sciences

AUTHORS (5)

Takayoshi Awakawa
Wei Liu
Tongxuan Bai
Tomo Taniguchi
Ikuro Abe
need help?