Supplementary material from "Older paternal ages and grandpaternal ages at conception predict longer telomeres in human descendants"
Version 2 2019-05-23, 14:15Version 2 2019-05-23, 14:15
Version 1 2019-05-20, 10:16Version 1 2019-05-20, 10:16
Posted on 2019-05-20 - 10:16
Telomere length (TL) declines with age in most human tissues, and shorter TL appears to accelerate senescence. By contrast, men's sperm TL is positively correlated with age. Correspondingly, in humans, older paternal age at conception (PAC) predicts longer offspring TL. We have hypothesized that this PAC effect could persist across multiple generations, and thereby contribute to a transgenerational genetic plasticity that increases expenditures on somatic maintenance as the average age at reproduction is delayed within a lineage. Here, we examine TL data from 3282 humans together with PAC data across four generations. In this sample, the PAC effect is detectable in children and grandchildren. The PAC effect is transmitted through the matriline and patriline with similar strength and is characterized by a generational decay. PACs of more distant male ancestors were not significant predictors, although statistical power was limited in these analyses. Sensitivity analyses suggest that the PAC effect is linear, not moderated by offspring age, or maternal age, and is robust to controls for income, urbanicity and ancestry. These findings show that TL reflects the age at the reproduction of recent male matrilineal and patrilineal ancestors, with an effect that decays across generations.
CITE THIS COLLECTION
DataCite
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
T. A. Eisenberg, Dan; Lee, Nanette R.; H. Rej, Peter; Geoffrey Hayes, M.; W. Kuzawa, Christopher (2019). Supplementary material from "Older paternal ages and grandpaternal ages at conception predict longer telomeres in human descendants". The Royal Society. Collection. https://doi.org/10.6084/m9.figshare.c.4510205.v1