The Royal Society
Browse

Supplementary material from "Meltwater generation in ice stream shear margins: case study in Antarctic ice streams"

Posted on 2023-05-30 - 09:06
Liquid water within glacier ice and at the glacier beds exerts a significant control on ice flow and glacier stability through a number of processes, including altering the rheology of the ice and lubricating the bed. Some of this water is generated as melt from regions of rapid deformation, including shear margins, due to heating by viscous dissipation. However, how much meltwater is generated and drained from shear margins remains unclear. Here, we apply a model that describes the evolution of ice temperature, melting, and water transport within deforming ice to estimate the flux of meltwater from shear margins in glaciers. We estimate the flux of meltwater from temperate ice zones in three Antarctic regions: Bindschadler and MacAyeal Ice Streams, Pine Island Glacier, and Byrd Glacier. We show that the flux of meltwater from shear margins in these regions may be as significant as the meltwater produced by frictional heating at the bed, with average fluxes of ~0.005–0.1 m yr−1. This contribution of shear heating to meltwater flux at the bed may thus affect both the rheology of the ice as well as sliding at the bed, both key controls on fast ice flow.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences

AUTHORS (4)

Meghana Ranganathan
Jack-William Barotta
Colin R. Meyer
Brent Minchew

CATEGORIES

need help?