The Royal Society
Browse

Supplementary material from "Imaging of nuclear magnetic resonance spin–lattice relaxation activation energy in cartilage"

Version 2 2018-07-04, 14:11
Version 1 2018-06-25, 10:31
Posted on 2018-07-04 - 14:11
Samples of human and bovine cartilage have been examined using magnetic resonance imaging to determine the proton nuclear magnetic resonance spin–lattice relaxation time, T1, as a function of depth within the cartilage. T1 was measured at five to seven temperatures between 8 and 38°C. From this, it is shown that the T1 relaxation time is well described by Arrhenius-type behaviour and the activation energy of the relaxation process is quantified. The activation energy within the cartilage is approximately 11 ± 2 kJ mol−1 with this notably being less than that for both pure water (16.6 ± 0.4 kJ mol−1) and the phosphate-buffered solution in which the cartilage was immersed (14.7 ± 1.0 kJ mol−1). It is shown that this activation energy increases as a function of depth in the cartilage. It is known that cartilage composition varies with depth, and hence, these results have been interpreted in terms of the structure within the cartilage tissue and the association of the water with the macromolecular constituents of the cartilage.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?