Supplementary material from "How does mobility help distributed systems compute?"
Posted on 2019-03-20 - 13:34
Brains are composed of connected neurons that compute by transmitting signals. The neurons are generally fixed in space, but the communication patterns that enable information processing change rapidly. By contrast, other biological systems, such as ant colonies, bacterial colonies, slime moulds and immune systems, process information using agents that communicate locally while moving through physical space. We refer to systems in which agents are strongly connected and immobile as solid, and to systems in which agents are not hardwired to each other and can move freely as liquid. We ask how collective computation depends on agent movement. A liquid cellular automaton (LCA) demonstrates the effect of movement and communication locality on consensus problems. A simple mathematical model predicts how these properties of the LCA affect how quickly information propagates through the system. While solid brains allow complex network structures to move information over long distances, mobility provides an alternative way for agents to transport information when long-range connectivity is expensive or infeasible. Our results show how simple mobile agents solve global information processing tasks more effectively than similar systems that are stationary.This article is part of the theme issue ‘Liquid Brains, Solid Brains’.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Vining, William F.; Esponda, Fernando; E. Moses, Melanie; Forrest, Stephanie (2019). Supplementary material from "How does mobility help distributed systems compute?". The Royal Society. Collection. https://doi.org/10.6084/m9.figshare.c.4441700.v1